Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774940

RESUMEN

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.

2.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370700

RESUMEN

Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after SARS-CoV-2 exposure. To investigate innate immune functions in MIS-C, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in children enrolled months after MIS-C recovery. Moreover, cells from MIS-C children carrying rare genetic variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Our results strongly suggest that MIS-C hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands drive immune cells to a lasting refractory state. TLR hyporesponsiveness is likely beneficial, as suggested by excess lymphopenia among rare LYST variant carriers. Our findings point to cellular mechanisms underlying TLR hyporesponsiveness; identify genetic determinants that may explain the MIS-C clinical spectrum; suggest potential associations between innate refractory states and long COVID; and highlight the need to monitor long-term consequences of MIS-C.

3.
J Clin Invest ; 134(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357931

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N , NAD , Femenino , Embarazo , Humanos , Ratones , Animales , NAD/metabolismo , Niacinamida , Fenotipo , Metaboloma , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo
4.
J Clin Immunol ; 44(2): 44, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231408

RESUMEN

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.


Asunto(s)
Artritis , Síndrome de Behçet , Productos Biológicos , Enfermedades Inflamatorias del Intestino , Masculino , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Artralgia , Proteínas de Unión al ADN , Factores de Transcripción/genética
5.
Genet Med ; 26(2): 101023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947183

RESUMEN

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Asunto(s)
Trastornos del Neurodesarrollo , Reinfección , Humanos , Leucocitos Mononucleares , Síndrome , Fenotipo , Arritmias Cardíacas/genética , Trastornos del Neurodesarrollo/genética , Moléculas de Adhesión Celular/genética , Proteínas de la Matriz Extracelular/genética
7.
Mol Biol Rep ; 50(12): 9963-9970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897612

RESUMEN

BACKGROUND: Bardet-Biedl Syndrome (BBS) is a rare (1:13,500-1-160,000) heterogeneous congenital disorder, characterized by postaxial polydactyly, obesity, hypogonadism, rod-cone dystrophy, cognitive impairment, and renal abnormalities (renal cystic dysplasia, anatomical malformation). To date about twenty-five genes have been identified to cause BBS, which accounts for about 80% of BBS diagnosis. METHODS: In the current study, we have performed mutational screening of four Pakistani consanguineous families (A-D) with clinical manifestation of BBS by microsatellite-based genotyping and whole exome sequencing. RESULTS: Analysis of the data revealed four variants, including a novel/unique inheritance pattern of compound heterozygous variants, p.(Ser40*) and p.(Thr259Leufs*21), in MKKS gene, novel homozygous variant, p.(Gly251Val)] in BBS7 gene and two previously reported p.(Thr259Leufs*21) in MKKS and p.(Met1Lys) in BBS5 gene. The variants were found segregated with the disorder within the families. CONCLUSION: The study not only expanded mutations spectrum in the BBS genes, but this will facilitate diagnosis and genetic counselling of families carrying BBS related phenotypes in Pakistani population.


Asunto(s)
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidad , Linaje , Análisis Mutacional de ADN , Mutación/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión a Fosfato
8.
Clin Case Rep ; 11(8): e7791, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37601427

RESUMEN

Key Clinical Message: Partial leukocyte adhesion deficiency type 1 (LAD-1) deficiency is extremely rare condition with milder infectious manifestation and immune system imbalance leads to increased risks of autoinflammatory complications, such as pyoderma gangrenosum, that can be triggered by trauma or pregnancy. In patients with spice-site ITGB2 variants, partial expression can occur due to different ß2 integrin isophorms expression. Abstract: LAD-1, OMIM ID #116920 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene that encodes the CD18 ß2 integrin subunit. According to the CD18 expression, LAD-1 is categorized as severe (<2%), moderate (2%-30%), or mild (>30%). Here, we describe a 22-year-old female, who presented with inflammatory skin disease and oral cavity, as well as respiratory tract infections during the first year of life. LAD-1 was diagnosed at the age of 2 years by low expression of CD18 (1%). Whole-exome sequencing identified homozygous c. 59-10C>A variant in the ITGB2 gene. Despite severe phenotype, the patient survived to adulthood without hematopoietic stem cell transplantation and became pregnant at the age of 20 years, with pregnancy complicated by a pyoderma gangrenosum-like lesion. During her life, CD18 expression increased from 1% to 9%; at 22 years of age, 5% of neutrophils and 9% of lymphocytes were CD18+. All CD18+-lymphocytes were predominantly memory/effector cytotoxic T cells. However, revertant mosaicism was not being established suggesting that CD18 expression variability may be mediated by other mechanisms such as different ß2 integrin isophorms expression.

9.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
10.
Am J Med Genet A ; 191(3): 760-769, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495114

RESUMEN

Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720-731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.


Asunto(s)
Artrogriposis , Embarazo , Femenino , Humanos , Artrogriposis/diagnóstico , Artrogriposis/genética , Diagnóstico Prenatal , Homocigoto , Atención Prenatal , Síndrome , Conectina/genética
11.
S D Med ; 75(6): 268-272, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36206568

RESUMEN

OBJECTIVE: To determine the yield of early endotracheal aspirate cultures in mechanically ventilated pediatric patients with acute respiratory failure due to acute respiratory tract infection and endeavor to guide antibiotic choice in acute respiratory failure with concern for infectious etiology. RESULTS: One-hundred ten admissions were included. Of those samples, 61 percent (67 out of 110) had bacterial growth in tracheal aspirate samples. Ninety percent (99 out of 110) patients have received antibiotics and in 47 percent (53 out of 110) antibiotics were optimized or discontinued according to the culture results. There were no difference in duration of mechanical ventilation or PICU stay in patients with positive versus negative cultures (p: 0.613, P: 0.337). CONCLUSIONS: Our study shows a high yield of positive tracheal aspirate cultures in infants, children and adolescents with acute respiratory failure. The cultures identify common organisms, helps to guide initial antibiotics choice, as well as later optimization or antibiotic discontinuation.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Infecciones del Sistema Respiratorio , Adolescente , Antibacterianos/uso terapéutico , Niño , Humanos , Lactante , Respiración Artificial/efectos adversos , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/etiología , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/diagnóstico
12.
Am J Med Genet A ; 188(10): 2869-2878, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899841

RESUMEN

The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios de Cohortes , Pruebas Genéticas , Humanos , Fenotipo , Estudios Retrospectivos
14.
Mol Med Rep ; 25(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35514310

RESUMEN

Variants in T­box transcription factor 5 (TBX5) can result in a wide phenotypic spectrum, specifically in the heart and the limbs. TBX5 has been implicated in causing non­syndromic cardiac defects and Holt­Oram syndrome (HOS). The present study investigated the underlying molecular etiology of a family with heterogeneous heart defects. The proband had mixed­type total anomalous pulmonary venous return (mixed­type TAPVR), whereas her mother had an atrial septal defect. Genetic testing through trio­based whole­exome sequencing was used to reveal the molecular etiology. A nonsense variant was identified in TBX5 (c.577G>T; p.Gly193*) initially showing co­segregation with a presumably non­syndromic presentation of congenital heart disease. Subsequent genetic investigations and more complete phenotyping led to the correct diagnosis of HOS, documenting the novel association of mixed­type TAPVR with HOS. Finally, protein modeling of the mutant TBX5 protein that harbored this pathogenic nonsense variant (p.Gly193*) revealed a substantial drop in the quantity of non­covalent bonds. The decrease in the number of non­covalent bonds suggested that the resultant mutant dimer was less stable compared with the wild­type protein, consequently affecting the protein's ability to bind DNA. The present findings extended the phenotypic cardiac defects associated with HOS; to the best of our knowledge, this is the first association of mixed­type TAPVR with TBX5. Prior to the current analysis, the molecular association of TAPVR with HOS had never been documented; hence, this is the first genetic investigation to report the association between TAPVR and HOS. Furthermore, it was demonstrated that the null­variants reported in the T­box domain of TBX5 were associated with a wide range of cardiac and/or skeletal anomalies on both the inter­and intrafamilial levels. In conclusion, genetic testing was highlighted as a potentially powerful approach in the prognostication of the proper diagnosis.


Asunto(s)
Cardiopatías Congénitas , Defectos del Tabique Interatrial , Síndrome de Cimitarra , Proteínas de Dominio T Box , Anomalías Múltiples , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Defectos del Tabique Interatrial/diagnóstico , Defectos del Tabique Interatrial/genética , Humanos , Deformidades Congénitas de las Extremidades Inferiores , Fenotipo , Síndrome de Cimitarra/genética , Proteínas de Dominio T Box/genética , Deformidades Congénitas de las Extremidades Superiores
15.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34326534

RESUMEN

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Asunto(s)
Proteínas de Unión al ADN/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Inflamatorias del Intestino/genética , Macrófagos/inmunología , Factores de Transcripción/genética , Animales , Calgranulina A/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Enfermedades Autoinflamatorias Hereditarias/inmunología , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Lipocalina 2/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología , Transcripción Genética/genética , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/metabolismo
16.
Mol Genet Genomics ; 296(4): 823-836, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33876311

RESUMEN

Next-generation sequencing platforms are being increasingly applied in clinical genetic settings for evaluation of families with suspected heritable disease. These platforms potentially improve the diagnostic yield beyond that of disease-specific targeted gene panels, but also increase the number of rare or novel genetic variants that may confound precise diagnostics. Here, we describe a functional testing approach used to interpret the results of whole exome sequencing (WES) in a family presenting with syncope and sudden death. One individual had a prolonged QT interval on electrocardiogram (ECG) and carried a diagnosis of long QT syndrome (LQTS), but a second individual did not meet criteria for LQTS. Filtering WES results for uncommon variants with arrhythmia association identified four for further analyses. In silico analyses indicated that two of these variants, KCNH2 p.(Cys555Arg) and KCNQ1 p.(Arg293Cys), were likely to be causal in this family's LQTS. We subsequently performed functional characterization of these variants in a heterologous expression system. The expression of KCNQ1-Arg293Cys did not show a deleterious phenotype but KCNH2-Cys555Arg demonstrated a loss-of-function phenotype that was partially dominant. Our stepwise approach identified a precise genetic etiology in this family, which resulted in the establishment of a LQTS diagnosis in the second individual as well as an additional asymptomatic family member, enabling personalized clinical management. Given its ability to aid in the diagnosis, the application of functional characterization should be considered as a value adjunct to in silico analyses of WES.


Asunto(s)
Canal de Potasio ERG1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Proteínas Quinasas Activadas por AMP/genética , Sustitución de Aminoácidos/genética , Análisis Mutacional de ADN/métodos , Electrocardiografía , Familia , Femenino , Pruebas Genéticas/métodos , Células HEK293 , Pruebas de Función Cardíaca/métodos , Humanos , Canal de Potasio KCNQ1/genética , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , Secuenciación del Exoma
17.
Am J Med Genet A ; 185(4): 1076-1080, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438828

RESUMEN

De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/patología , Discapacidades del Desarrollo/genética , Neuropéptidos/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Niño , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Humanos , Larva/genética , Masculino , Fenotipo , Convulsiones/genética , Convulsiones/patología , Xenopus laevis/genética
19.
J Med Genet ; 58(7): 453-464, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32631816

RESUMEN

BACKGROUND: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.


Asunto(s)
Ciliopatías/genética , Anomalías Congénitas/genética , Proteínas de la Membrana/genética , Mutación , Proteínas Supresoras de Tumor/genética , Animales , Encéfalo/patología , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Feto/anomalías , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Humanos , Riñón/patología , Masculino , Linaje , Transducción de Señal , Secuenciación del Exoma , Xenopus
20.
Am J Med Genet A ; 182(10): 2291-2296, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32812332

RESUMEN

Recessive variants in the GLDN gene, which encodes the gliomedin protein and is involved in nervous system development, have recently been associated with Arthrogryposis Multiplex Congenita (AMC), a heterogenous condition characterized by congenital contractures of more than one joint. Two cohorts of patients with GLDN-associated AMC have previously been described, evolving the understanding of the condition from lethal to survivable with the provision of significant neonatal support. Here, we describe one additional patient currently living with the syndrome, having one novel variant, p.Leu365Phe, for which we provide functional data supporting its pathogenicity. We additionally provide experimental data for four other previously reported variants lacking functional evidence, including p.Arg393Lys, the second variant present in our patient. We discuss unique and defining clinical features, adding calcium-related findings which appear to be recurrent in the GLDN cohort. Finally, we compare all previously reported patients and draw new conclusions about scope of illness, with emphasis on the finding of pulmonary hypoplasia, suggesting that AMC secondary to GLDN variants may be best fitted under the umbrella of fetal akinesia deformation sequence (FADS).


Asunto(s)
Artrogriposis/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Artrogriposis/patología , Preescolar , Femenino , Humanos , Mutación , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...