Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 276(40): 37547-55, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11477109

RESUMEN

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.


Asunto(s)
Ácido Eicosapentaenoico/metabolismo , Isoenzimas/metabolismo , Ácido Linoleico/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Ciclooxigenasa 1 , Ácido Eicosapentaenoico/química , Isoenzimas/química , Leucina/metabolismo , Ácido Linoleico/química , Modelos Moleculares , Mutación , Oxidación-Reducción , Fenilalanina/metabolismo , Prostaglandina-Endoperóxido Sintasas/química , Conformación Proteica , Serina/metabolismo , Especificidad por Sustrato , Valina/metabolismo
2.
J Biol Chem ; 276(13): 10358-65, 2001 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-11121413

RESUMEN

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-gamma-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 A. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the V(max)/K(m) for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega-half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/genética , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/genética , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animales , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Sitios de Unión , Western Blotting , Células COS , Cristalografía por Rayos X , Análisis Mutacional de ADN , Ácidos Grasos/metabolismo , Cinética , Modelos Moleculares , Mutación , Oxígeno/metabolismo , Peroxidasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Unión Proteica , Conformación Proteica , Serina/química , Especificidad por Sustrato , Transfección , Valina/química
3.
J Biol Chem ; 276(13): 10347-57, 2001 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-11121412

RESUMEN

Prostaglandin endoperoxide H synthases (PGHSs) catalyze the committed step in the biosynthesis of prostaglandins and thromboxane, the conversion of arachidonic acid, two molecules of O(2), and two electrons to prostaglandin endoperoxide H(2) (PGH(2)). Formation of PGH(2) involves an initial oxygenation of arachidonate to yield PGG(2) catalyzed by the cyclooxygenase activity of the enzyme and then a reduction of the 15-hydroperoxyl group of PGG(2) to form PGH(2) catalyzed by the peroxidase activity. The cyclooxygenase active site is a hydrophobic channel that protrudes from the membrane binding domain into the core of the globular domain of PGHS. In the crystal structure of Co(3+)-heme ovine PGHS-1 complexed with arachidonic acid, 19 cyclooxygenase active site residues are predicted to make a total of 50 contacts with the substrate (Malkowski, M. G, Ginell, S., Smith, W. L., and Garavito, R. M. (2000) Science 289, 1933-1937); two of these are hydrophilic, and 48 involve hydrophobic interactions. We performed mutational analyses to determine the roles of 14 of these residues and 4 other closely neighboring residues in arachidonate binding and oxygenation. Mutants were analyzed for peroxidase and cyclooxygenase activity, and the products formed by various mutants were characterized. Overall, the results indicate that cyclooxygenase active site residues of PGHS-1 fall into five functional categories as follows: (a) residues directly involved in hydrogen abstraction from C-13 of arachidonate (Tyr-385); (b) residues essential for positioning C-13 of arachidonate for hydrogen abstraction (Gly-533 and Tyr-348); (c) residues critical for high affinity arachidonate binding (Arg-120); (d) residues critical for positioning arachidonate in a conformation so that when hydrogen abstraction does occur the molecule is optimally arranged to yield PGG(2) versus monohydroperoxy acid products (Val-349, Trp-387, and Leu-534); and (e) all other active site residues, which individually make less but measurable contributions to optimal catalytic efficiency.


Asunto(s)
Ácido Araquidónico/metabolismo , Isoenzimas/química , Isoenzimas/fisiología , Oxígeno/metabolismo , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/fisiología , Aminoácidos/química , Animales , Sitios de Unión , Western Blotting , Células COS , Catálisis , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Ciclooxigenasa 1 , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Ésteres/metabolismo , Hidrógeno , Cinética , Leucina/química , Metionina/química , Modelos Biológicos , Modelos Químicos , Peroxidasa/metabolismo , Fenilalanina/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Ovinos , Factores de Tiempo , Transfección , Triptófano/química
4.
J Biol Chem ; 275(12): 8501-7, 2000 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-10722687

RESUMEN

Arachidonic acid is converted to prostaglandin G(2) (PGG(2)) by the cyclooxygenase activities of prostaglandin endoperoxide H synthases (PGHSs) 1 and 2. The initial, rate-limiting step is abstraction of the 13-proS hydrogen from arachidonate which, for PGG(2) formation, is followed by insertion of O(2) at C-11, cyclization, and a second O( 2) insertion at C-15. As an accompaniment to ongoing structural studies designed to determine the orientation of arachidonate in the cyclooxygenase site, we analyzed the products formed from arachidonate by (a) solubilized, partially purified ovine (o) PGHS-1; (b) membrane-associated, recombinant oPGHS-1; and (c) a membrane-associated, recombinant active site mutant (V349L oPGHS-1) and determined kinetic values for formation of each product. Native forms of oPGHS-1 produced primarily PGG(2) but also several monohydroxy acids, which, in order of abundance, were 11R-hydroxy-5Z, 8Z,12E,14Z-eicosatetraenoic acid (11R-HETE), 15S-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid (15S-HETE), and 15R-HETE. V349L oPGHS-1 formed primarily PGG(2), 15S-HETE, and 15R-HETE but only trace amounts of 11R-HETE. With native enzyme, the K(m) values for PGG(2), 11-HETE, and 15-HETE formation were each different (5.5, 12.1, and 19.4 microM, respectively); similarly, the K(m) values for PGG(2) and 15-HETE formation by V349L oPGHS-1 were different (11 and 5 microM, respectively). These results establish that arachidonate can assume at least three catalytically productive arrangements within the cyclooxygenase site of oPGHS-1 leading to PGG(2), 11R-HETE, and 15S-HETE and/or 15R-HETE, respectively. IC(50) values for inhibition of formation of the individual products by the competitive inhibitor, ibuprofen, were determined and found to be the same for a given enzyme form (i.e. 175 microM for oPGHS-1 and 15 microM for V349L oPGHS-1). These latter results are most simply rationalized by a kinetic model in which arachidonate forms various catalytically competent arrangements only after entering the cyclooxygenase active site.


Asunto(s)
Ácido Araquidónico/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Isoenzimas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas G/metabolismo , Animales , Dominio Catalítico/genética , Ciclooxigenasa 1 , Inhibidores de la Ciclooxigenasa/farmacología , Relación Dosis-Respuesta a Droga , Ibuprofeno/farmacología , Isoenzimas/genética , Masculino , Microsomas/enzimología , Modelos Químicos , Mutagénesis Sitio-Dirigida , Mutación , Prostaglandina-Endoperóxido Sintasas/genética , Vesículas Seminales/enzimología , Ovinos , Estereoisomerismo
5.
Exp Cell Res ; 242(2): 419-28, 1998 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-9683529

RESUMEN

Using both conventional and laser confocal fluorescence microscopy, the intracellular distribution of galectin-1 in HeLa cells was analyzed and compared with the localization of previously documented markers of the nucleus and cytoplasm. The Sm epitopes of the small nuclear ribonucleoprotein complexes (snRNPs) and the non-snRNP splicing factor SC35 yielded only nuclear staining. On the other hand, the enzyme lactate dehydrogenase was cytoplasmic. In contrast to these patterns in which nuclear versus cytoplasmic localizations appeared to be mutually exclusive, galectin-1, as well as galectin-3, yielded simultaneous nuclear and cytoplasmic staining. Confocal microscopy showed galectin-1 fluorescence throughout most of the sections from the top of the cell to the bottom. Through the middle sections, as the plane of focus cuts through the nucleus, there was definite fluorescence staining in the nuclear compartment. This nuclear localization was critically dependent on the type of detergent used to permeabilize the cell: cells treated with saponin or digitonin yielded exclusively cytoplasmic staining while Triton X-100-treated cells showed nuclear as well as cytoplasmic labeling. Finally, double-immunofluorescence analysis showed that, within the nucleoplasm, the following pairs of nuclear antigens could be colocalized in certain speckled structures: (a) SC35 versus Sm; (b) galectin-1 versus Sm; (c) galectin-3 versus Sm; and (d) galectin-1 versus galectin-3. These results establish the presence of galectin-1 in the nuclei of HeLa cells, a conclusion consistent with the identification of the protein in nuclear extracts of the same cells and with its documentation as a factor in pre-mRNA splicing.


Asunto(s)
Núcleo Celular/química , Hemaglutininas/análisis , Proteínas Nucleares/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas , Antígenos de Diferenciación/inmunología , Autoantígenos/inmunología , Permeabilidad de la Membrana Celular , Núcleo Celular/efectos de los fármacos , Citoplasma/química , Detergentes/farmacología , Epítopos/análisis , Técnica del Anticuerpo Fluorescente Directa , Galectina 1 , Galectina 3 , Células HeLa , Hemaglutininas/efectos de los fármacos , Humanos , Microscopía Confocal , Ribonucleoproteínas Nucleares Pequeñas/inmunología , Factores de Empalme Serina-Arginina , Proteínas Nucleares snRNP
6.
J Biol Chem ; 271(47): 29569-75, 1996 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-8939885

RESUMEN

Prostaglandin endoperoxide H synthase-1 (PGHS-1) is expressed constitutively in murine NIH 3T3 cells and RAW 264.7 cells. PGHS-2 is inducibly expressed in these cells following stimulation with serum or bacterial lipopolysaccharide (LPS), respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis established that a variety of G protein-linked and peroxisomal proliferator-activated prostanoid receptors are expressed in both of these cell types. The levels of the EP2 and EP4 prostaglandin E2 (PGE2) receptors and the prostaglandin I2 receptor were changed in these cells by serum or LPS stimulation. Quantitative RT-PCR indicated that the mRNA for the murine EP4 receptor, the butaprost-insensitive PGE2 receptor that couples to Gs, increases 1.5-3-fold in response to serum (NIH 3T3) or LPS (RAW 264.7) with a time course approximating the induction of PGHS-2 expression. To study expression of the EP4 receptor we isolated the mouse EP4 receptor gene; the gene is 10 kilobase pairs (kb) in length and, like other known prostanoid receptor genes, contains three exons and two introns. The first intron is 0.5 kb and is located 16 base pairs (bp) downstream of the translational start site. This is a different location than that of the first introns of other prostanoid receptor genes. The second intron is located immediately following the sixth transmembrane domain at the same position as the second intron of the thromboxane A2 receptor, prostaglandin D2 receptor, prostaglandin I2 receptor, and one of the PGE2 (EP1) receptor genes. A major transcriptional start was detected at -142 bp upstream of the translational start. There are a variety of putative cis-acting elements within 1.5 kb upstream of the translational start site and within the first intron. Promoter analyses of the EP4 receptor gene promoter in RAW 264.7 cells indicated that there is a constitutive negative regulatory region between -992 and -928 bp, a constitutive positive region between -928 and -554 bp, and an LPS/serum-responsive region between -554 and -116 bp.


Asunto(s)
Receptores de Prostaglandina E/genética , Células 3T3 , Animales , Secuencia de Bases , Intrones , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Mensajero/genética , Subtipo EP4 de Receptores de Prostaglandina E , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...