Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36104276

RESUMEN

Given its inputs from auditory structures and neuromodulatory systems, the posterior tail of the striatum is ideally positioned to influence behavioral responses to acoustic stimuli according to context and previous rewards. Results from previous studies indicate that neurons in this striatal region display selective responses to sounds. However, it is not clear whether different striatal cell classes code for distinct features of sounds or how different striatal output pathways may use acoustic information to guide behavior. Here we compared the sound-evoked responses of posterior striatal neurons that form the striatal direct pathway (and express the dopamine receptor D1) to the responses of neighboring neurons in naive mice. We achieved this via optogenetic photo-identification of D1-expressing neurons during extracellular electrophysiological recordings in awake head-fixed mice of both sexes. We found that the frequency tuning of sound-responsive direct-pathway striatal neurons is comparable with that of their sound-responsive neighbors. Moreover, we found that both populations encode amplitude-modulated sounds in a similar fashion. These results suggest that different classes of neurons in the posterior striatum of naive animals have similar access to acoustic features conveyed by the auditory system even outside the context of an auditory task.


Asunto(s)
Cuerpo Estriado , Neostriado , Animales , Cuerpo Estriado/fisiología , Femenino , Masculino , Ratones , Neostriado/fisiología , Neuronas/fisiología , Receptores Dopaminérgicos , Sonido
2.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168950

RESUMEN

The ability to separate background noise from relevant acoustic signals is essential for appropriate sound-driven behavior in natural environments. Examples of this separation are apparent in the auditory system, where neural responses to behaviorally relevant stimuli become increasingly noise invariant along the ascending auditory pathway. However, the mechanisms that underlie this reduction in responses to background noise are not well understood. To address this gap in knowledge, we first evaluated the effects of auditory cortical inactivation on mice of both sexes trained to perform a simple auditory signal-in-noise detection task and found that outputs from the auditory cortex are important for the detection of auditory stimuli in noisy environments. Next, we evaluated the contributions of the two most common cortical inhibitory cell types, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, to the perception of masked auditory stimuli. We found that inactivation of either PV+ or SOM+ cells resulted in a reduction in the ability of mice to determine the presence of auditory stimuli masked by noise. These results indicate that a disruption of auditory cortical network dynamics by either of these two types of inhibitory cells is sufficient to impair the ability to separate acoustic signals from noise.


Asunto(s)
Corteza Auditiva , Estimulación Acústica , Animales , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Femenino , Interneuronas/fisiología , Masculino , Ratones , Neuronas/fisiología , Ruido , Parvalbúminas/metabolismo
3.
J Neurosci ; 40(18): 3564-3575, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32220950

RESUMEN

Sensory systems integrate multiple stimulus features to generate coherent percepts. Spectral surround suppression, the phenomenon by which sound-evoked responses of auditory neurons are suppressed by stimuli outside their receptive field, is an example of this integration taking place in the auditory system. While this form of global integration is commonly observed in auditory cortical neurons, and potentially used by the nervous system to separate signals from noise, the mechanisms that underlie this suppression of activity are not well understood. We evaluated the contributions to spectral surround suppression of the two most common inhibitory cell types in the cortex, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, in mice of both sexes. We found that inactivating SOM+ cells, but not PV+ cells, significantly reduces sustained spectral surround suppression in excitatory cells, indicating a dominant causal role for SOM+ cells in the integration of information across multiple frequencies. The similarity of these results to those from other sensory cortices provides evidence of common mechanisms across the cerebral cortex for generating global percepts from separate features.SIGNIFICANCE STATEMENT To generate coherent percepts, sensory systems integrate simultaneously occurring features of a stimulus, yet the mechanisms by which this integration occurs are not fully understood. Our results show that neurochemically distinct neuronal subtypes in the primary auditory cortex have different contributions to the integration of different frequency components of an acoustic stimulus. Together with findings from other sensory cortices, our results provide evidence of a common mechanism for cortical computations used for global integration of stimulus features.


Asunto(s)
Estimulación Acústica/métodos , Corteza Auditiva/metabolismo , Interneuronas/metabolismo , Somatostatina/biosíntesis , Potenciales de Acción/fisiología , Animales , Corteza Auditiva/citología , Electrodos Implantados , Femenino , Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Somatostatina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...