Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(6): 1485-1499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849184

RESUMEN

Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.


Asunto(s)
Esofagitis Eosinofílica , Esófago , Esofagitis Eosinofílica/inmunología , Esofagitis Eosinofílica/patología , Humanos , Esófago/patología , Esófago/inmunología , Animales , Eosinófilos/inmunología , Eosinófilos/patología
2.
J Allergy Clin Immunol ; 153(6): 1634-1646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460680

RESUMEN

BACKGROUND: Systemic allergic reactions (sARs) following coronavirus disease 2019 (COVID-19) mRNA vaccines were initially reported at a higher rate than after traditional vaccines. OBJECTIVE: We aimed to evaluate the safety of revaccination in these individuals and to interrogate mechanisms underlying these reactions. METHODS: In this randomized, double-blinded, phase 2 trial, participants aged 16 to 69 years who previously reported a convincing sAR to their first dose of COVID-19 mRNA vaccine were randomly assigned to receive a second dose of BNT162b2 (Comirnaty) vaccine and placebo on consecutive days in a blinded, 1:1 crossover fashion at the National Institutes of Health. An open-label BNT162b2 booster was offered 5 months later if the second dose did not result in severe sAR. None of the participants received the mRNA-1273 (Spikevax) vaccine during the study. The primary end point was recurrence of sAR following second dose and booster vaccination; exploratory end points included biomarker measurements. RESULTS: Of 111 screened participants, 18 were randomly assigned to receive study interventions. Eight received BNT162b2 second dose followed by placebo; 8 received placebo followed by BNT162b2 second dose; 2 withdrew before receiving any study intervention. All 16 participants received the booster dose. Following second dose and booster vaccination, sARs recurred in 2 participants (12.5%; 95% CI, 1.6 to 38.3). No sAR occurred after placebo. An anaphylaxis mimic, immunization stress-related response (ISRR), occurred more commonly than sARs following both vaccine and placebo and was associated with higher predose anxiety scores, paresthesias, and distinct vital sign and biomarker changes. CONCLUSIONS: Our findings support revaccination of individuals who report sARs to COVID-19 mRNA vaccines. Distinct clinical and laboratory features may distinguish sARs from ISRRs.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Humanos , Persona de Mediana Edad , Masculino , Adulto , Femenino , Método Doble Ciego , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Anciano , Adolescente , Adulto Joven , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Recurrencia , Vacunación , Vacuna nCoV-2019 mRNA-1273 , Estudios Cruzados
3.
Sci Immunol ; 9(91): eadg8691, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241399

RESUMEN

Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFß pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of TGFΒR1/2. We demonstrate that LDS mutations lead to reduced TGFß signaling and elevated total and allergen-specific IgE, despite the presence of wild-type T regulatory cells in a chimera model. Germinal center activity was enhanced in LDS and characterized by a selective increase in type 2 follicular helper T cells (TFH2). Expression of Pik3cg was increased in LDS TFH cells and associated with reduced levels of the transcriptional repressor SnoN. PI3Kγ/mTOR signaling in LDS naïve CD4+ T cells was elevated after T cell receptor cross-linking, and pharmacologic inhibition of PI3Kγ or mTOR prevented exaggerated TFH2 and antigen-specific IgE responses after oral antigen exposure in an adoptive transfer model. Naïve CD4+ T cells from nonsyndromic allergic individuals also displayed decreased TGFß signaling, suggesting that our mechanistic discoveries may be broadly relevant to allergic patients in general. Thus, TGFß plays a conserved, T cell-intrinsic, and nonredundant role in restraining TFH2 development via the PI3Kγ/mTOR pathway and thereby protects against allergic disease.


Asunto(s)
Hipersensibilidad , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Hipersensibilidad/metabolismo , Inmunoglobulina E , Células Th2 , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA