Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(1): 108717, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299033

RESUMEN

Animals respond to habitat alteration with changes in their behavior and physiology. These changes determine individual performance and thus precede changes in population size. They are therefore hypothesized to provide important insights into how animals cope with environmental change. Here, we investigated physiological and behavioral responses of a cooperatively breeding bird, the placid greenbul (Phyllastrephus placidus), in a severely fragmented tropical biodiversity hotspot and combined these data with remotely sensed (LiDAR) environmental data. We found that individuals had increased glucocorticoid hormone levels when breeding in territories with low native canopy cover or located within small fragments. However, when breeding with the help of subordinates, breeders in low quality territories had similar glucocorticoid levels as those in higher quality territories. Our study shows that sociality may impact how well animals cope with environmental change and contributes to our understanding of the role of glucocorticoid physiology and behavior in response to anthropogenic change.

2.
Sci Rep ; 12(1): 5698, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383206

RESUMEN

Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed the influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed-effects models revealed that underpass height influenced use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. We also found that the use of underpasses by livestock reduced the probability of use by nearly 50% for wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses characterized by vegetation with higher NDVI and near water sources while baboons, dik-diks and antelope avoided underpasses with high NDVI. Our findings suggest a need for diverse and comprehensive approaches for mitigating the negative impacts of rail on African wildlife.


Asunto(s)
Ecosistema , Mamíferos , Animales , Animales Salvajes , Ecología , Kenia
3.
Heliyon ; 7(3): e06364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33748462

RESUMEN

Roadkill is one of the highest causes of wildlife mortality and is of global conservation concern. Most roadkill studies have focused on wildlife in developed countries such as the United States of America and temperate biomes, but there are limited data for the impacts of roads on wildlife in the African tropics, where road infrastructure development is projected to grow rapidly in natural environments and conservation areas. The Tsavo Conservation Area is an important biodiversity hotspot in eastern Kenya and is bisected by a major highway and railways that connect the port of Mombasa to the interior. Along this infrastructure corridor, roadkill was recorded for 164 days over an 11-year period (2007-2018). In total, 1,436 roadkill were recorded from 13,008 km driven of a 164.42 km Nairobi-Mombasa road representing 0.11 collisions per kilometer. The majority of roadkill were small to medium sized mammals (<15kg) (53%; n = 756), whereas birds comprised 32% (n = 460), reptiles 10% (n = 143), with the remaining 5% (n = 77) being large mammals (>15kg). Of the 460 birds recorded, 264 were identifiable represented by 62 species. All large mammals comprising 10 species were identified, including the African elephant, Loxodonta africana and the endangered African wild dog, Lycaon pictus. Thirteen species of small mammal were also identified dominated by Kirk's dik-dik (Madoqua kirkii). Reptiles were represented by 11 species which were identified to the species level. Roadkill hotspots were identified using a kernel density method. The spatial distribution of roadkill was associated with adjacent shrub vegetation and proximity to permanent and seasonal rivers, and differences in seasonality and habitats were observed. Roadkill was lowest on road sections that traversed settled areas as opposed to roads adjacent to the protected areas. The results demonstrate that roadkill for two of the taxonomic groups - mammals and birds - appear high with numerous species detected in the Tsavo Conservation Area. These results can be used to focus efforts to reduce wildlife mortality by guiding future mitigation efforts.

4.
Conserv Biol ; 31(4): 743-752, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28221699

RESUMEN

Increasing habitat fragmentation and human population growth in Africa has resulted in an escalation in human-elephant conflict between small-scale farmers and free-ranging African elephants (Loxodonta Africana). In 2012 Kenya Wildlife Service (KWS) implemented the national 10-year Conservation and Management Strategy for the Elephant in Kenya, which includes an action aimed at testing whether beehive fences can be used to mitigate human-elephant conflict. From 2012 to 2015, we field-tested the efficacy of beehive fences to protect 10 0.4-ha farms next to Tsavo East National Park from elephants. We hung a series of beehives every 10 m around the boundary of each farm plot. The hives were linked with strong wire. After an initial pilot test with 2 farms, the remaining 8 of 10 beehive fences also contained 2-dimensional dummy hives between real beehives to help reduce the cost of the fence. Each trial plot had a neighboring control plot of the same size within the same farm. Of the 131 beehives deployed 88% were occupied at least once during the 3.5-year trial. Two hundred and fifty-three elephants, predominantly 20-45 years old entered the community farming area, typically during the crop- ripening season. Eighty percent of the elephants that approached the trial farms were kept out of the areas protected by the beehive fences, and elephants that broke a fence were in smaller than average groups. Beehive fences not only kept large groups of elephants from invading the farmland plots but the farmers also benefited socially and financially from the sale of 228 kg of elephant-friendly honey. As news of the success of the trial spread, a further 12 farmers requested to join the project, bringing the number of beehive fence protected farms to 22 and beehives to 297. This demonstrates positive adoption of beehive fences as a community mitigation tool. Understanding the response of elephants to the beehive fences, the seasonality of crop raiding and fence breaking, and the willingness of the community to engage with the mitigation method will help contribute to future management strategies for this high human-elephant conflict hotspot and other similar areas in Kenya.


Asunto(s)
Conservación de los Recursos Naturales , Elefantes , Agricultores , Animales , Ecosistema , Planificación Ambiental , Humanos , Kenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA