Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Intensive Care Med Exp ; 11(1): 88, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062217

RESUMEN

BACKGROUND: Direct assessment of microcirculatory function remains a critical care research tool but approaches for analysis of microcirculatory videomicroscopy clips are shifting from manual to automated algorithms, with a view to clinical application in the intensive care unit. Automated analysis software associated with current sidestream darkfield videomicroscopy systems is demonstrably unreliable; therefore, semi-automated analysis of captured clips should be undertaken in older generations of software. We present a method for capture of microcirculatory clips using current version videomicroscope hardware and resizing of clips to allow compatibility with legacy analysis software. The interobserver reliability of this novel approach is examined, in addition to a comparison of this approach with the current generation of automated analysis software. RESULTS: Resizing microcirculatory clips did not significantly change image quality. Assessment of bias between observers for manual analysis of resized clips; and between manually analysed clips and automated software analysis was undertaken by Bland-Altman analysis. Bias was demonstrated for all parameters for manual analysis of resized clips (total vessel density = 6.8, perfused vessel density = 6.3, proportion of perfused vessels = - 8.79, microvascular flow index = - 0.08). Marked bias between manual analysis and automated analysis was also evident (total vessel density = 16.6, perfused vessel density = 16.0, proportion of perfused vessels = 1.8). The difference between manual and automated analysis was linearly related to the magnitude of the measured parameter. CONCLUSIONS: Poor reliability of automated analysis is a significant hurdle for clinical translation of microcirculatory monitoring. The method presented here allows capture of microcirculatory clips using current hardware that are backwards compatible with older versions of manual analysis software. We conclude that this approach is appropriate for research applications in the intensive care unit, however the time delay to results limits utility for clinical translation.

2.
Bioengineering (Basel) ; 10(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892943

RESUMEN

It is generally accepted that the human abdominal wall comprises skin, subcutaneous tissues, muscles and their aponeuroses, and the parietal peritoneum. Understanding these layers and their mechanical properties provides valuable information to those designing procedural skills trainers, supporting surgical procedures (hernia repair), and engineering-based work (in silico simulation). However, there is little literature available on the mechanical properties of the abdominal wall in layers or as a composite in the context of designing a procedural skills trainer. This work characterizes the tensile properties of the human abdominal wall by layer and as a partial composite. Tissues were collected from fresh-never-frozen and fresh-frozen cadavers and tested in uniaxial tension at a rate of 5 mm/min until failure. Stress-strain curves were created for each sample, and the values for elastic moduli, ultimate tensile strength, and strain at failure were obtained. The experimental outcomes from this study demonstrated variations in tensile properties within and between tissues. The data also suggest that the tensile properties of composite abdominal walls are not additive. Ultimately, this body of work contributes to a deeper comprehension of these mechanical properties and will serve to enhance patient care, refine surgical interventions, and assist with more sophisticated engineering solutions.

3.
Animal Model Exp Med ; 6(5): 499-503, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661363

RESUMEN

BACKGROUND: This study aimed to compare sublingual microcirculatory parameters between anesthetized pigs and conscious adult humans using sidestream darkfield videomicroscopy. The overarching aim of the work was to validate the pig as an experimental model of changes in microcirculatory function following traumatic haemorrhagic shock and resuscitation. METHODS: Fourteen large white pigs and 14 humans were recruited for the study. Sublingual sidestream darkfield videomicroscopy clips were captured in anesthetized pigs and conscious humans. Clips underwent manual analysis in Automated Vascular Analysis 3.2 software. The total vessel density (TVD), perfused vessel density (PVD), proportion of perfused vessels (PPVs) and microvascular flow index (MFI) were quantified. An independent samples t test was used for between species comparison of microcirculatory parameters. RESULTS AND CONCLUSIONS: Conscious humans had a significantly lower TVD, PVD and MFI than anesthetized pigs. No significant difference in PPVs was observed between the species. Perfusion of the microcirculation is a critical determinant of tissue metabolic function and viability. Whilst it may not be surprising that some interspecies differences in the sublingual microcirculatory anatomy were identified between pig and human subjects, it is interesting to report the insignificant difference in PPVs. This direct microcirculatory measure represents a relative change which should hold translatable value across species. We therefore conclude the pig is a suitable model for microcirculatory research and may be a suitable species to investigate changes in microcirculatory perfusion following perturbations in cardiovascular homeostasis, for example during traumatic haemorrhagic shock and resuscitation.


Asunto(s)
Choque Hemorrágico , Humanos , Adulto , Porcinos , Animales , Microcirculación , Microscopía por Video , Choque Traumático , Perfusión
4.
JBI Evid Synth ; 21(12): 2309-2405, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732940

RESUMEN

OBJECTIVE: The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION: Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA: Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS: This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS: Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS: This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION: Open Science Framework https://osf.io/fgb34.


Asunto(s)
Fenómenos Biomecánicos , Aprendizaje , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA