Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(28): e202303872, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38477400

RESUMEN

Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [R2Al(2-py')]2 (R=Me, iBu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised. The formation of the undesired cis isomers can be suppressed by the presence of substituents on the 6-position of the pyridyl ring due to steric congestion, with DFT calculations showing that the selection of the trans isomer is thermodynamically controlled. Calculations show that demethylation of the dimers [Me2Al(2-py')]2 with Ph3C+ to the cations [{MeAl(2-py')}2(µ-Me)]+ is highly favourable and that the desired trans disposition of the 2-pyridyl ring units is influenced by steric effects. Preliminary experimental studies confirm that demethylation of [Me2Al(6-MeO-2-py)]2 can be achieved using [Ph3C][B(C6F5)4].

2.
Chem Sci ; 14(43): 12355-12365, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969604

RESUMEN

The selectivity in a group of oxazaborolidinium ion-catalysed reactions between aldehyde and diazo compounds cannot be explained using transition state theory. VRAI-selectivity, developed to predict the outcome of dynamically controlled reactions, can account for both the chemo- and the stereo-selectivity in these reactions, which are controlled by reaction dynamics. Subtle modifications to the substrate or catalyst substituents alter the potential energy surface, leading to changes in predominant reaction pathways and altering the barriers to the major product when reaction dynamics are considered. In addition, this study suggests an explanation for the mysterious inversion of enantioselectivity resulting from the inclusion of an orthoiPrO group in the catalyst.

3.
J Chem Inf Model ; 63(14): 4364-4375, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37428183

RESUMEN

CONFPASS (Conformer Prioritizations and Analysis for DFT re-optimizations) has been developed to extract dihedral angle descriptors from conformational searching outputs, perform clustering, and return a priority list for density functional theory (DFT) re-optimizations. Evaluations were conducted with DFT data of the conformers for 150 structurally diverse molecules, most of which are flexible. CONFPASS gives a confidence estimate that the global minimum structure has been found, and based on our dataset, we can have 90% confidence after optimizing half of the FF structures. Re-optimizing conformers in order of the FF energy often generates duplicate results; using CONFPASS, the duplication rate is reduced by a factor of 2 for the first 30% of the re-optimizations, which include the global minimum structure about 80% of the time.


Asunto(s)
Conformación Molecular , Termodinámica
4.
Angew Chem Int Ed Engl ; 62(26): e202304756, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37118885

RESUMEN

The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3 )-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.


Asunto(s)
5-Metilcitosina , Electrones , 5-Metilcitosina/química , Oxidación-Reducción , Catálisis , Epigénesis Genética
5.
Angew Chem Weinheim Bergstr Ger ; 135(26): e202304756, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38516645

RESUMEN

The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3)-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.

6.
J Am Chem Soc ; 142(43): 18599-18618, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32991152

RESUMEN

Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.


Asunto(s)
Ciclopentanos/química , Furanos/química , Antagonistas de Receptores de GABA-A/síntesis química , Ginkgo biloba/química , Ginkgólidos/química , Bromuros/química , Ciclopentanos/síntesis química , Furanos/síntesis química , Antagonistas de Receptores de GABA-A/química , Ginkgo biloba/metabolismo , Ginkgólidos/síntesis química , Marcaje Isotópico , Lactonas/química , Conformación Molecular , Oxidación-Reducción , Estereoisomerismo
7.
J Org Chem ; 85(4): 2618-2625, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31891501

RESUMEN

The mechanism of the aza-Diels-Alder reaction catalyzed by tetraalkylammonium or trialkylsulfonium salts is explored with density functional theory. Favorable electrostatic interactions between the dienophile and the charged catalyst stabilize the highly polar transition state, leading to lower free energy barriers and higher dipole moments. Endo selectivity is predicted for both uncatalyzed and catalyzed systems. We also computationally evaluate the effects of oriented external electric fields (EEFs) on the same aza-Diels-Alder reaction, demonstrating that very strong EEFs would be needed to achieve the catalytic strength of these cationic catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...