Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 33(4): 1113-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25524439

RESUMEN

During cardiogenesis, most myocytes arise from cardiac progenitors expressing the transcription factors Isl1 and Nkx2-5. Here, we show that a direct repression of Isl1 by Nkx2-5 is necessary for proper development of the ventricular myocardial lineage. Overexpression of Nkx2-5 in mouse embryonic stem cells (ESCs) delayed specification of cardiac progenitors and inhibited expression of Isl1 and its downstream targets in Isl1(+) precursors. Embryos deficient for Nkx2-5 in the Isl1(+) lineage failed to downregulate Isl1 protein in cardiomyocytes of the heart tube. We demonstrated that Nkx2-5 directly binds to an Isl1 enhancer and represses Isl1 transcriptional activity. Furthermore, we showed that overexpression of Isl1 does not prevent cardiac differentiation of ESCs and in Xenopus laevis embryos. Instead, it leads to enhanced specification of cardiac progenitors, earlier cardiac differentiation, and increased cardiomyocyte number. Functional and molecular characterization of Isl1-overexpressing cardiomyocytes revealed higher beating frequencies in both ESC-derived contracting areas and Xenopus Isl1-gain-of-function hearts, which associated with upregulation of nodal-specific genes and downregulation of transcripts of working myocardium. Immunocytochemistry of cardiomyocyte lineage-specific markers demonstrated a reduction of ventricular cells and an increase of cells expressing the pacemaker channel Hcn4. Finally, optical action potential imaging of single cardiomyocytes combined with pharmacological approaches proved that Isl1 overexpression in ESCs resulted in normally electrophysiologically functional cells, highly enriched in the nodal subtype at the expense of the ventricular lineage. Our findings provide an Isl1/Nkx2-5-mediated mechanism that coordinately regulates the specification of cardiac progenitors toward the different myocardial lineages and ensures proper acquisition of myocyte subtype identity.


Asunto(s)
Proteínas de Homeodominio/biosíntesis , Proteínas con Homeodominio LIM/antagonistas & inhibidores , Proteínas con Homeodominio LIM/biosíntesis , Miocitos Cardíacos/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Animales , Linaje de la Célula/fisiología , Células Madre Embrionarias/metabolismo , Células HEK293 , Proteína Homeótica Nkx-2.5 , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica/fisiología , Xenopus
2.
Tuberculosis (Edinb) ; 94(6): 678-89, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25154927

RESUMEN

Tuberculosis (TB) is the leading cause of bacterial death worldwide. Due to the emergence of multi-drug resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), and the persistence of latent infections, a safe and effective TB therapy is highly sought after. Antimicrobial peptides (AMPs) have therapeutic potential against infectious diseases and have the ability to target microbial pathogens within eukaryotic cells. In the present study, we investigated the activity of a family of six AMPs containing all-D amino acids (D-LAK peptides) against MDR and XDR clinical strains of Mycobacterium tuberculosis (Mtb) both in vitro and, using THP-1 cells as a macrophage model, cultured ex vivo. All the D-LAK peptides successfully inhibited the growth of Mtb in vitro and were similarly effective against MDR and XDR strains. D-LAK peptides effectively broke down the heavy clumping of mycobacteria in broth culture, consistent with a 'detergent-like effect' that could reduce the hydrophobic interactions between the highly lipidic cell walls of the mycobacteria, preventing bacteria cell aggregation. Furthermore, though not able to eradicate the intracellular mycobacteria, D-LAK peptides substantially inhibited the intracellular growth of drug-resistant Mtb clinical isolates at concentrations that were well tolerated by THP-1 cells. Finally, combining D-LAK peptide with isoniazid could enhance the anti-TB efficacy. D-LAK peptide, particularly D-LAK120-A, was effective as an adjunct agent at non-toxic concentration to potentiate the efficacy of isoniazid against drug-resistant Mtb in vitro, possibly by facilitating the access of isoniazid into the mycobacteria by increasing the surface permeability of the pathogen.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Antituberculosos/administración & dosificación , Células Cultivadas , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Isoniazida/farmacología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
3.
EMBO Mol Med ; 4(3): 180-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22174035

RESUMEN

Coordinated release of calcium (Ca(2+) ) from the sarcoplasmic reticulum (SR) through cardiac ryanodine receptor (RYR2) channels is essential for cardiomyocyte function. In catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited disease characterized by stress-induced ventricular arrhythmias in young patients with structurally normal hearts, autosomal dominant mutations in RYR2 or recessive mutations in calsequestrin lead to aberrant diastolic Ca(2+) release from the SR causing arrhythmogenic delayed after depolarizations (DADs). Here, we report the generation of induced pluripotent stem cells (iPSCs) from a CPVT patient carrying a novel RYR2 S406L mutation. In patient iPSC-derived cardiomyocytes, catecholaminergic stress led to elevated diastolic Ca(2+) concentrations, a reduced SR Ca(2+) content and an increased susceptibility to DADs and arrhythmia as compared to control myocytes. This was due to increased frequency and duration of elementary Ca(2+) release events (Ca(2+) sparks). Dantrolene, a drug effective on malignant hyperthermia, restored normal Ca(2+) spark properties and rescued the arrhythmogenic phenotype. This suggests defective inter-domain interactions within the RYR2 channel as the pathomechanism of the S406L mutation. Our work provides a new in vitro model to study the pathogenesis of human cardiac arrhythmias and develop novel therapies for CPVT.


Asunto(s)
Dantroleno/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Adulto , Calcio/metabolismo , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética
4.
N Engl J Med ; 363(15): 1397-409, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20660394

RESUMEN

BACKGROUND: Long-QT syndromes are heritable diseases associated with prolongation of the QT interval on an electrocardiogram and a high risk of sudden cardiac death due to ventricular tachyarrhythmia. In long-QT syndrome type 1, mutations occur in the KCNQ1 gene, which encodes the repolarizing potassium channel mediating the delayed rectifier I(Ks) current. METHODS: We screened a family affected by long-QT syndrome type 1 and identified an autosomal dominant missense mutation (R190Q) in the KCNQ1 gene. We obtained dermal fibroblasts from two family members and two healthy controls and infected them with retroviral vectors encoding the human transcription factors OCT3/4, SOX2, KLF4, and c-MYC to generate pluripotent stem cells. With the use of a specific protocol, these cells were then directed to differentiate into cardiac myocytes. RESULTS: Induced pluripotent stem cells maintained the disease genotype of long-QT syndrome type 1 and generated functional myocytes. Individual cells showed a "ventricular," "atrial," or "nodal" phenotype, as evidenced by the expression of cell-type­specific markers and as seen in recordings of the action potentials in single cells. The duration of the action potential was markedly prolonged in "ventricular" and "atrial" cells derived from patients with long-QT syndrome type 1, as compared with cells from control subjects. Further characterization of the role of the R190Q­KCNQ1 mutation in the pathogenesis of long-QT syndrome type 1 revealed a dominant negative trafficking defect associated with a 70 to 80% reduction in I(Ks) current and altered channel activation and deactivation properties. Moreover, we showed that myocytes derived from patients with long-QT syndrome type 1 had an increased susceptibility to catecholamine-induced tachyarrhythmia and that beta-blockade attenuated this phenotype. CONCLUSIONS: We generated patient-specific pluripotent stem cells from members of a family affected by long-QT syndrome type 1 and induced them to differentiate into functional cardiac myocytes. The patient-derived cells recapitulated the electrophysiological features of the disorder. (Funded by the European Research Council and others.)


Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas/fisiología , Canal de Potasio KCNQ1/genética , Miocitos Cardíacos/citología , Síndrome de Romano-Ward/fisiopatología , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Adulto , Anciano , Cardiotónicos/farmacología , Niño , Femenino , Fibroblastos/citología , Expresión Génica , Humanos , Isoproterenol/farmacología , Factor 4 Similar a Kruppel , Masculino , Mutación Missense , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Linaje , Fenotipo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndrome de Romano-Ward/tratamiento farmacológico , Síndrome de Romano-Ward/genética
5.
FASEB J ; 24(3): 700-11, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19850773

RESUMEN

Ectopic expression of defined sets of genetic factors can reprogram somatic cells to create induced pluripotent stem (iPS) cells. The capacity to direct human iPS cells to specific differentiated lineages and to their progenitor populations can be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. During mouse cardiogenesis, the major lineages of the mature heart, cardiomyocytes, smooth muscle cells, and endothelial cells arise from a common, multipotent cardiovascular progenitor expressing the transcription factors Isl1 and Nkx2.5. Here we show, using genetic fate-mapping, that Isl1(+) multipotent cardiovascular progenitors can be generated from mouse iPS cells and spontaneously differentiate in all 3 cardiovascular lineages in vivo without teratoma. Moreover, we report the identification of human iPS-derived ISL1(+) progenitors with similar developmental potential. These results support the possibility to use patient-specific iPS-generated cardiovascular progenitors as a model to elucidate the pathogenesis of congenital and acquired forms of heart diseases.-Moretti, A., Bellin, M., Jung, C. B., Thies, T.-M., Takashima, Y., Bernshausen, A., Schiemann, M., Fischer, S., Moosmang, S., Smith, A. G., Lam, J. T., Laugwitz, K.-L. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1(+) cardiovascular progenitors.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Multipotentes/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Citometría de Flujo , Heterocigoto , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa , Factores de Transcripción
6.
Pediatr Cardiol ; 30(5): 690-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19415155

RESUMEN

Regenerative therapies for heart diseases require the understanding of the molecular mechanisms that govern the fates and differentiation of the diverse muscle and nonmuscle cell lineages that form during heart development. During mouse cardiogenesis, the major lineages of the mature heart, cardiomyocytes, smooth muscle, endothelial cells, and cardiac mesenchyme, arise from multipotent cardiovascular progenitors expressing the transcription factors Mesp1, Isl1, Nkx2-5, and Tbx18. Recent identification of stem/progenitor cells of embryonic origin with intrinsic competence to differentiate into multiple lineages of the heart offers exciting new possibilities for cardiac regeneration. When combined with new advances in nuclear reprogramming, the prospect of achieving autologous, cardiomyogenic, stem-cell-based therapy might be within reach.


Asunto(s)
Corazón/fisiología , Regeneración/fisiología , Células Madre , Animales , Corazón/embriología , Humanos , Ratones , Miocitos Cardíacos/citología , Células Madre Pluripotentes
7.
Cell ; 127(6): 1151-65, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17123592

RESUMEN

Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Endoteliales/citología , Proteínas de Homeodominio/genética , Células Madre Multipotentes/fisiología , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos del Músculo Liso/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Células Clonales , Corazón/embriología , Heterocigoto , Proteínas con Homeodominio LIM , Ratones , Ratones Endogámicos , Factores de Transcripción
8.
Cardiovasc Res ; 68(3): 387-93, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16256964

RESUMEN

OBJECTIVES: Here we address the capacity of bone marrow-derived cells (BMDCs) to trans-differentiate into mature myocytes under the physiological stimulus of exercise training. METHODS: For this purpose, we have transplanted bone marrow from mice ubiquitously expressing enhanced green fluorescence protein (eGFP) into host mice that have been subjected to a prolonged program of exercise. RESULTS: In all successful bone marrow reconstitutions (greater than 80%), we observed rare but consistent events of bone marrow-derived cardiomyocytes, the frequency of which was unchanged upon exercise training. We have further determined whether these recruited myocytes are a product of trans-differentiation or fusion by the use of a genetic system that distinguishes cell fusion from trans-differentiation in a single-cell assay. CONCLUSIONS: We concluded that both in the unchallenged mouse and in the trained specimens, fusion is the most prominent mechanism by which bone marrow-derived cells are observed in the myocyte compartment.


Asunto(s)
Trasplante de Médula Ósea , Miocitos Cardíacos/citología , Condicionamiento Físico Animal , Animales , Diferenciación Celular , Fusión Celular , Linaje de la Célula , Separación Celular , Supervivencia de Injerto , Proteínas Fluorescentes Verdes/genética , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regeneración , Quimera por Trasplante
9.
J Biol Chem ; 280(9): 8016-21, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15598648

RESUMEN

Myotonic dystrophy (DM) is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Cardiovascular disease is one of the most prevalent causes of death in DM patients. Electrophysiological studies in cardiac muscles from DM patients and from DMPK(-/-) mice suggested that DMPK is critical to the modulation of cardiac contractility and to the maintenance of proper cardiac conduction activity. However, there are no data regarding the molecular signaling pathways involved in DM heart failure. Here we show that DMPK expression in cardiac myocytes is highly enriched in the sarcoplasmic reticulum (SR) where it colocalizes with the ryanodine receptor and phospholamban (PLN), a muscle-specific SR Ca(2+)-ATPase (SERCA2a) inhibitor. Coimmunoprecipitation studies showed that DMPK and PLN can physically associate. Furthermore, purified wild-type DMPK, but not a kinase-deficient mutant (K110A DMPK), phosphorylates PLN in vitro. Subsequent studies using the DMPK(-/-) mice demonstrated that PLN is hypo-phosphorylated in SR vesicles from DMPK(-/-) mice compared with wild-type mice both in vitro and in vivo. Finally, we show that Ca(2+) uptake in SR is impaired in ventricular homogenates from DMPK(-/-) mice. Together, our data suggest the existence of a novel regulatory DMPK pathway for cardiac contractility and provide a molecular mechanism for DM heart pathology.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Retículo Sarcoplasmático/metabolismo , Adenoviridae/metabolismo , Animales , Anticuerpos Monoclonales/química , ATPasas Transportadoras de Calcio/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Células HeLa , Ventrículos Cardíacos/patología , Humanos , Immunoblotting , Inmunoprecipitación , Hibridación in Situ , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Mutación , Proteína Quinasa de Distrofia Miotónica , Fosforilación , Unión Proteica , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal , Factores de Tiempo , Transfección , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...