Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659873

RESUMEN

In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.

2.
Dev Dyn ; 250(11): 1634-1650, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33840153

RESUMEN

BACKGROUND: miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized. RESULTS: We found that loss of miR-33 predisposes flies to elevated TAG levels, and we identified genes involved in TAG synthesis as direct targets of miR-33, including atpcl, midway, and Akt1. miR-33 mutants survived longer upon starvation but showed greater sensitivity to an oxidative stressor. We also found evidence that miR-33 is a negative regulator of cuticle pigmentation and that miR-33 mutants show a reduction in interfollicular stalk cells during oogenesis. CONCLUSION: Our data suggest that miR-33 is a conserved regulator of lipid homeostasis, and its targets are involved in both degradation and synthesis of fatty acids and TAG. The constellation of phenotypes involving tissues that are highly sensitive to metabolic state suggests that miR-33 serves to prevent extreme fluctuations in metabolically sensitive tissues.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroARNs/genética , Triglicéridos/metabolismo
3.
Front Ecol Evol ; 82020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37035752

RESUMEN

Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.

4.
Fly (Austin) ; 11(1): 53-64, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27494619

RESUMEN

Genome editing via the CRISPR/Cas9 RNA-guided nuclease system has opened up exciting possibilities for genetic analysis. However, technical challenges associated with homology-directed repair have proven to be roadblocks for producing changes in the absence of unwanted, secondary mutations commonly known as "scars." To address these issues, we developed a 2-stage, marker-assisted strategy to facilitate precise, "scarless" edits in Drosophila with a minimal requirement for molecular screening. Using this method, we modified 2 base pairs in a gene of interest without altering the final sequence of the CRISPR cut sites. We executed this 2-stage allele swap using a novel transformation marker that drives expression in the pupal wings, which can be screened for in the presence of common eye-expressing reporters. The tools we developed can be used to make a single change or a series of allelic substitutions in a region of interest in any D. melanogaster genetic background as well as in other Drosophila species.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Edición Génica/métodos , Alelos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Mutación
5.
Infect Immun ; 82(9): 3837-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24980969

RESUMEN

Staphylococcus aureus virulence is coordinated through the Agr quorum-sensing system to produce an array of secreted molecules. One important class of secreted virulence factors is the phenol-soluble modulins (PSMs). PSMs are small-peptide toxins that have recently been characterized for their roles in infection, biofilm development, and subversion of the host immune system. In this work, we demonstrate that the signal peptide of the S. aureus quorum-sensing signal, AgrD, shares structural and functional similarities with the PSM family of toxins. The efficacy of this peptide (termed N-AgrD) beyond AgrD propeptide trafficking has never been described before. We observe that N-AgrD, like the PSMs, is found in the amyloid fibrils of S. aureus biofilms and is capable of forming and seeding amyloid fibrils in vitro. N-AgrD displays cytolytic and proinflammatory properties that are abrogated after fibril formation. These data suggest that the N-AgrD leader peptide affects S. aureus biology in a manner similar to that described previously for the PSM peptide toxins. Taken together, our findings suggest that peptide cleavage products can affect cellular function beyond their canonical roles and may represent a class of virulence factors warranting further exploration.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptidos Cíclicos/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Amiloide/genética , Amiloide/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Humanos , Neutrófilos/metabolismo , Neutrófilos/microbiología , Péptidos Cíclicos/genética , Señales de Clasificación de Proteína/genética , Percepción de Quorum/genética , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
PLoS One ; 8(11): e80331, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265807

RESUMEN

Maladaptive hybridization, as determined by the pattern and intensity of selection against hybrid individuals, is an important factor contributing to the evolution of prezygotic reproductive isolation. To identify the consequences of hybridization between Drosophila pseudoobscura and D. persimilis, we estimated multiple fitness components for F1 hybrids and backcross progeny and used these to compare the relative fitness of parental species and their hybrids across two generations. We document many sources of intrinsic (developmental) and extrinsic (ecological) selection that dramatically increase the fitness costs of hybridization beyond the well-documented F1 male sterility in this model system. Our results indicate that the cost of hybridization accrues over multiple generations and reinforcement in this system is driven by selection against hybridization above and beyond the cost of hybrid male sterility; we estimate a fitness loss of >95% relative to the parental species across two generations of hybridization. Our findings demonstrate the importance of estimating hybridization costs using multiple fitness measures from multiple generations in an ecologically relevant context; so doing can reveal intense postzygotic selection against hybridization and thus, an enhanced role for reinforcement in the evolution of populations and diversification of species.


Asunto(s)
Drosophila/genética , Aptitud Genética , Hibridación Genética , Animales , Drosophila/crecimiento & desarrollo , Femenino , Humanos , Estadios del Ciclo de Vida , Masculino , Selección Genética , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA