Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2216158120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155849

RESUMEN

Accurate prediction of precipitation intensity is crucial for both human and natural systems, especially in a warming climate more prone to extreme precipitation. Yet, climate models fail to accurately predict precipitation intensity, particularly extremes. One missing piece of information in traditional climate model parameterizations is subgrid-scale cloud structure and organization, which affects precipitation intensity and stochasticity at coarse resolution. Here, using global storm-resolving simulations and machine learning, we show that, by implicitly learning subgrid organization, we can accurately predict precipitation variability and stochasticity with a low-dimensional set of latent variables. Using a neural network to parameterize coarse-grained precipitation, we find that the overall behavior of precipitation is reasonably predictable using large-scale quantities only; however, the neural network cannot predict the variability of precipitation (R2 ∼ 0.45) and underestimates precipitation extremes. The performance is significantly improved when the network is informed by our organization metric, correctly predicting precipitation extremes and spatial variability (R2 ∼ 0.9). The organization metric is implicitly learned by training the algorithm on a high-resolution precipitable water field, encoding the degree of subgrid organization. The organization metric shows large hysteresis, emphasizing the role of memory created by subgrid-scale structures. We demonstrate that this organization metric can be predicted as a simple memory process from information available at the previous time steps. These findings stress the role of organization and memory in accurate prediction of precipitation intensity and extremes and the necessity of parameterizing subgrid-scale convective organization in climate models to better project future changes of water cycle and extremes.

2.
Sci Total Environ ; 773: 145531, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582332

RESUMEN

We investigated the changes in the size distribution, coating thickness, and mass absorption cross-section (MAC) of black carbon (BC) with aging and estimated the light absorption enhancement (Eabs) in the Asian outflow from airborne in-situ measurements during 2016 KORUS-AQ campaign. The BC number concentration decreased, but mass mean diameter increased with increasing altitude in the West Coast (WC) and Seoul Metropolitan Area (SMA), reflecting the contrast between freshly emitted BC-containing particles at the surface and more aged aerosol associated with aggregation during vertical mixing and transport. Contradistinctively, BC number and mass size distributions were relatively invariant with altitude over the Yellow Sea (YS) because sufficiently aged BC from eastern China were horizontally transported to all altitudes over the YS, and there are no significant sources at the surface. The averaged inferred MAC of refractory BC in three regions reflecting differences in their size distributions increased to 9.8 ± 1.0 m2 g-1 (YS), 9.3 ± 0.9 m2 g-1 (WC), and 8.2 ± 0.9 m2 g-1 (SMA) as BC coating thickness increased from 20 nm to 120 nm. The absorption coefficient of BC calculated from the coating thickness and MAC were highly correlated with the filter-based absorption measurements with the slope of 1.16 and R2 of 0.96 at 550 nm, revealing that the thickly coated BC had a large MAC and absorption coefficient. The Eabs due to the inferred coatings was estimated as 1.0-1.6, which was about 30% lower than those from climate models and laboratory experiments, suggesting that the increase in the BC absorption by the coatings in the Asian outflow is not as large as calculated in the previous studies. Organics contributed to the largest Eabs accounting for 69% (YS), 61% (WC), and 64% (SMA). This implies that organics are largely responsible for the lensing effect of BC rather than sulfates in the Asian outflow.

3.
Rev Sci Instrum ; 91(4): 045120, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357726

RESUMEN

We describe a new tunable diode laser (TDL) absorption instrument, the Chicago Water Isotope Spectrometer, designed for measurements of vapor-phase water isotopologues in conditions characteristic of the upper troposphere [190-235 K temperature and 2-500 parts per million volume (ppmv) water vapor]. The instrument is primarily targeted for measuring the evolving ratio of HDO/H2O during experiments in the "Aerosol Interaction and Dynamics in the Atmosphere" (AIDA) cloud chamber. The spectrometer scans absorption lines of both H2O and HDO near the 2.64 µm wavelength in a single current sweep, increasing the accuracy of isotopic ratio measurements. At AIDA, the instrument is configured with a 256-m path length White cell for in situ measurements, and effective sensitivity can be augmented by enhancing the HDO content of chamber water vapor by an order of magnitude. The instrument has participated to date in the 2012-2013 IsoCloud campaigns studying isotopic partitioning during the formation of cirrus clouds and in the AquaVIT-II instrument intercomparison campaign. Realized precisions for 1-s measurements during these campaigns were 22 ppbv for H2O and 16 ppbv for HDO, equivalent to relative precisions of less than 0.5% for each species at 8 ppmv water vapor. The 1-s precision of the [HDO]/[H2O] ratio measurement ranged from 1.6‰ to 5.6‰ over the range of experimental conditions. H2O measurements showed agreement with calculated saturation vapor pressure to within 1% in conditions of sublimating ice and agreement with other AIDA instruments (the AIDA SP-APicT reference TDL instrument and an MBW 373LX chilled mirror hygrometer) to within 2.5% and 3.8%, respectively, over conditions suitable for all instruments (temperatures from 204 K to 234 K and H2O content equivalent to 15-700 ppmv at 200 hPa).

4.
Artículo en Inglés | MEDLINE | ID: mdl-33409323

RESUMEN

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

5.
Proc Natl Acad Sci U S A ; 114(22): 5612-5617, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28495968

RESUMEN

The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...