Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Compr Physiol ; 12(2): 3303-3336, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35578967

RESUMEN

Genomics has grown exponentially over the last decade. Common variants are associated with physiological changes through statistical strategies such as Genome-Wide Association Studies (GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through extensive filtering tools, including population genomics and trio-based sequencing (parents and probands). However, the genomic associations require follow-up analyses to narrow causal variants, identify genes that are influenced, and to determine the physiological changes. Large quantities of data exist that can be used to connect variants to gene changes, cell types, protein pathways, clinical phenotypes, and animal models that establish physiological genomics. This data combined with bioinformatics including evolutionary analysis, structural insights, and gene regulation can yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry, cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular variant mechanisms. Variant characterizations can be a significant component of educating future professionals at the undergraduate, graduate, or medical training programs through teaching the basic concepts and terminology of genetics while learning independent research hypothesis design. This article goes through the computational and experimental analysis strategies of variant characterization and provides examples of these tools applied in publications. © 2022 American Physiological Society. Compr Physiol 12:3303-3336, 2022.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Animales , Biología Computacional , Predisposición Genética a la Enfermedad , Humanos , Fenotipo
2.
HGG Adv ; 3(1): 100055, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047846

RESUMEN

A clinical hereditary cancer population screening initiative, called Information is Power, began in North Alabama in 2015. After 4 years of the initiative, we were interested in exploring (1) the characteristics and motivations for patients who self-refer to population genetic testing, (2) how patients make decisions on testing, (3) what patients do with results, and (4) patient perceptions of benefits and limitations after undergoing population genetic testing. Patients who consented to research recontact at time of test ordering were sent an electronic survey with the option for a follow-up phone interview. Among the 2,918 eligible patients, 239 responded to the survey and 19 completed an interview. Survey and interview participants were highly educated information seekers motivated by learning more about their health. Those who were previously interested in hereditary cancer testing reported barriers were cost and insurance coverage, access to testing, and uncertainty how results could impact their health. Many participants (77%) communicated with family and friends about their decision to test and communicated about test results. Fewer participants (23%) discussed the decision to test with their healthcare providers; however, 58% of participants discussed their test results with a healthcare provider. Most people (96%) with negative results accurately recalled their results. In contrast, three out of 11 positive results for heterozygous MUTYH, PALB2, and BRCA2 reported receiving negative results. This study contributes to knowledge on population genetic testing and may guide other population genetic testing programs as they develop enrollment materials and educational materials and consider downstream needs of population genetic testing participants.

3.
Hum Genet ; 140(3): 423-439, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32734384

RESUMEN

Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Genómica , Transcriptoma , Sustitución de Aminoácidos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Mutación , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
4.
bioRxiv ; 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511397

RESUMEN

The SARS-CoV-2 pandemic, starting in 2019, has challenged the speed at which labs perform science, ranging from discoveries of the viral composition to handling health outcomes in humans. The small ~30kb single-stranded RNA genome of Coronaviruses makes them adept at cross species spread and drift, increasing their probability to cause pandemics. However, this small genome also allows for a robust understanding of all proteins coded by the virus. We employed protein modeling, molecular dynamic simulations, evolutionary mapping, and 3D printing to gain a full proteome and dynamicome understanding of SARS-CoV-2. The Viral Integrated Structural Evolution Dynamic Database (VIStEDD) has been established (prokoplab.com/vistedd), opening future discoveries and educational usage. In this paper, we highlight VIStEDD usage for nsp6, Nucleocapsid (N), and Spike (S) surface glycoprotein. For both nsp6 and N we reveal highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we have developed a quantitative dynamics cross correlation matrix insight into interaction with the ACE2/SLC6A19 dimer complex. From this quantitative matrix, we elucidated 47 potential functional missense variants from population genomic databases within ACE2/SLC6A19/TMPRSS2, warranting genomic enrichment analyses in SARS-CoV-2 patients. Moreover, these variants have ultralow frequency, but can exist as hemizygous in males for ACE2, which falls on the X-chromosome. Two noncoding variants (rs4646118 and rs143185769) found in ~9% of African descent individuals for ACE2 may regulate expression and be related to increased susceptibility of African Americans to SARS-CoV-2. This powerful database of SARS-CoV-2 can aid in research progress in the ongoing pandemic.

5.
J Biol Chem ; 295(33): 11742-11753, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32587094

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged the speed at which laboratories can discover the viral composition and study health outcomes. The small ∼30-kb ssRNA genome of coronaviruses makes them adept at cross-species spread while enabling a robust understanding of all of the proteins the viral genome encodes. We have employed protein modeling, molecular dynamics simulations, evolutionary mapping, and 3D printing to gain a full proteome- and dynamicome-level understanding of SARS-CoV-2. We established the Viral Integrated Structural Evolution Dynamic Database (VIStEDD at RRID:SCR_018793) to facilitate future discoveries and educational use. Here, we highlight the use of VIStEDD for nsp6, nucleocapsid (N), and spike (S) surface glycoprotein. For both nsp6 and N, we found highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we developed a quantitative dynamics cross-correlation matrix to gain insights into its interactions with the angiotensin I-converting enzyme 2 (ACE2)-solute carrier family 6 member 19 (SLC6A19) dimer. Using this quantitative matrix, we elucidated 47 potential functional missense variants from genomic databases within ACE2/SLC6A19/transmembrane serine protease 2 (TMPRSS2), warranting genomic enrichment analyses in SARS-CoV-2 patients. These variants had ultralow frequency but existed in males hemizygous for ACE2. Two ACE2 noncoding variants (rs4646118 and rs143185769) present in ∼9% of individuals of African descent may regulate ACE2 expression and may be associated with increased susceptibility of African Americans to SARS-CoV-2. We propose that this SARS-CoV-2 database may aid research into the ongoing pandemic.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/genética , Infecciones por Coronavirus/metabolismo , Bases de Datos de Proteínas , Simulación de Dinámica Molecular , Neumonía Viral/metabolismo , Proteoma , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima Convertidora de Angiotensina 2 , Población Negra/genética , COVID-19 , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Predisposición Genética a la Enfermedad , Variación Genética , Interacciones Huésped-Patógeno , Humanos , Masculino , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Fosfoproteínas , Neumonía Viral/virología , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Genome Med ; 9(1): 43, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28554332

RESUMEN

BACKGROUND: Developmental disabilities have diverse genetic causes that must be identified to facilitate precise diagnoses. We describe genomic data from 371 affected individuals, 309 of which were sequenced as proband-parent trios. METHODS: Whole-exome sequences (WES) were generated for 365 individuals (127 affected) and whole-genome sequences (WGS) were generated for 612 individuals (244 affected). RESULTS: Pathogenic or likely pathogenic variants were found in 100 individuals (27%), with variants of uncertain significance in an additional 42 (11.3%). We found that a family history of neurological disease, especially the presence of an affected first-degree relative, reduces the pathogenic/likely pathogenic variant identification rate, reflecting both the disease relevance and ease of interpretation of de novo variants. We also found that improvements to genetic knowledge facilitated interpretation changes in many cases. Through systematic reanalyses, we have thus far reclassified 15 variants, with 11.3% of families who initially were found to harbor a VUS and 4.7% of families with a negative result eventually found to harbor a pathogenic or likely pathogenic variant. To further such progress, the data described here are being shared through ClinVar, GeneMatcher, and dbGaP. CONCLUSIONS: Our data strongly support the value of large-scale sequencing, especially WGS within proband-parent trios, as both an effective first-choice diagnostic tool and means to advance clinical and research progress related to pediatric neurological disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Genómica/métodos , Discapacidad Intelectual/genética , Mutación , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico , Exoma , Femenino , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Masculino , Adulto Joven
7.
Am Biol Teach ; 78(1): 15-21, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-28163322

RESUMEN

Life science classrooms often emphasize the exception to the rule when it comes to teaching genetics, focusing heavily on rare single-gene and Mendelian traits. By contrast, the vast majority of human traits and diseases are caused by more complicated interactions between genetic and environmental factors. Research indicates that students have a deterministic view of genetics, generalize Mendelian inheritance patterns to all traits, and have unrealistic expectations of genetic technologies. The challenge lies in how to help students analyze complex disease risk with a lack of curriculum materials. Providing open access to both content resources and an engaging storyline can be achieved using a "serious game" model. "Touching Triton" was developed as a serious game in which students are asked to analyze data from a medical record, family history, and genomic report in order to develop an overall lifetime risk estimate of six common, complex diseases. Evaluation of student performance shows significant learning gains in key content areas along with a high level of engagement.

8.
Genet Med ; 15(8): 658-63, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23448722

RESUMEN

Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.


Asunto(s)
Medios de Comunicación , Genómica/educación , Alfabetización en Salud , Atención a la Salud , Investigación Genética , Genoma Humano , Conocimientos, Actitudes y Práctica en Salud , Humanos , National Human Genome Research Institute (U.S.) , Salud Pública , Investigación , Instituciones Académicas , Estados Unidos
9.
J Genet Couns ; 21(5): 704-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22383109

RESUMEN

Recent advances in research and biotechnology are making genetics and genomics increasingly relevant to the lives and health of the general public. For the public to make informed healthcare and public policy decisions relating to genetic information, there is a need for increased genetic literacy. Biotech 101 is a free, short-course for the local community introducing participants to topics in genetics, genomics, and biotechnology, created at the HudsonAlpha Institute for Biotechnology. This study evaluated the effectiveness of Biotech 101 in increasing the genetic literacy of program participants through pre-and-post surveys. Genetic literacy was measured through increases in self-perceived knowledge for each content area covered through the course and the self-reported impact the course had on various aspects of participants' lives. Three hundred ninety-two individuals attended Biotech 101 during the first three course offerings. Participants reported a significant increase in self-perceived knowledge for each content area (p < 0.01). Participants also reported the program had high levels of impact on their lives and decision-making, a high likelihood for continued self-learning, and overwhelming satisfaction with course content and logistics. Biotech 101 is an effective mechanism for impacting participants' lives and genetic literacy and serves as a model for other similar programs, adding to the currently limited evidence base regarding public educational strategies in genetics and biotechnology.


Asunto(s)
Biotecnología/educación , Curriculum , Genética/educación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Per Med ; 6(6): 681, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20161675

RESUMEN

Where do members of the public turn to understand what genetic tests mean in terms of their own health? Now that genome-wide association studies and complete genome sequencing are widely available, the importance of education in personalized genomics cannot be overstated. Although some media have introduced the concept of genetic testing to better understand health and disease, the public's understanding of the scope and impact of genetic variation has not kept up with the pace of the science or technology. Unfortunately, the likely sources to which the public turn to for guidance - their physician and the media - are often no better prepared. We examine several venues for information, including print and online guides for both lay and health-oriented audiences, and summarize selected resources in multiple formats. We also note on the roadblocks to progress and discuss ways to remove them, as urgent action is needed to connect people with their genomes in a meaningful way.

11.
Lung Cancer ; 53(3): 285-94, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16822578

RESUMEN

Germline inactivation of LKB1 is responsible for Peutz-Jeghers syndrome, an autosomal dominant disorder characterized by benign hamartomas of the GI tract and an increased predisposition to certain cancers, including lung. Acquired mutations in LKB1 are rarely observed in most sporadic tumor types except for adenocarcinomas of the lung where up to 50% harbor inactivating mutations. In this study, we focused on LKB1 mutations in lung cancer cell lines originating from large cell carcinomas. We identified a novel 1.5kb interstitial deletion within LKB1 gene in H157 cancer cells. Homozygosity mapping-of-deletion analysis (HOMOD) analysis showed that the deletion is accompanied by LOH of one parental allele, indicating biallelic inactivation of LKB1. This deletion results in an LKB1 transcript lacking exons 2 and 3 and a predicted in-frame deletion of 58 amino acids within the kinase domain of the LKB1 protein. The truncated transcript was expressed at relatively low levels, and the truncated LKB1 protein was virtually undetectable in this cell line. To determine the impact of LKB1 protein truncation on its function, we examined AMPK-alpha, a downstream target of LKB1 kinase activity triggered by low energy stress conditions. Phosphorylation of AMPK-alpha was attenuated in H157 cells treated with 2-deoxyglucose, and could be rescued by expression of an exogenous GFP-LKB1 fusion protein. Therefore, our data suggest that LKB1 function is compromised in H157. Of the four cell lines and six primary tumors of large cell lung carcinoma origin that have been evaluated in this and other studies, LKB1 mutations have been found in three cases. These results suggest that, in addition to adenocarcinomas, acquired loss of function mutations in LKB1 may also be frequently involved in the pathogenesis of large cell lung carcinomas.


Asunto(s)
Carcinoma de Células Grandes/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Alelos , Línea Celular Tumoral , ADN Complementario/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Humanos , Pérdida de Heterocigocidad , Complejos Multienzimáticos/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína
12.
Cancer Biol Ther ; 5(6): 601-7, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16627986

RESUMEN

Inactivation of TGF-beta/SMAD4 signaling was postulated to play an important role in breast cancer development. Even though SMAD4 is located on 18q21, a region frequently lost in breast cancers, point mutations of SMAD4 were rarely observed, implying that biallelic inactivation of SMAD4 was not necessary in the process. In this study, a novel homozygous deletion of SMAD4 was identified in breast cancer cell line SW527 during a screening of 31 breast cancer cell lines. As several breast cancer cell lines were shown to contain SMAD4 homozygous deletion, we sought to develop a reliable method to access such lesions in archived primary tumor specimens. First, a DNA quantification method was developed to measure as few as 5 copies of DNA templates so that the amount of genomic DNA isolated by laser-capture microdissection can be accurately determined. Next, accurate DNA quantitation allowed sufficient DNA templates to be included in the homozygous deletion assay for the robust amplification of SMAD4 genetic markers. Two out of 24 primary infiltrative ductal carcinomas (IDC) with 18q allelic imbalance were determined to contain SMAD4 homozygous deletions, and these samples are also negative for Smad4 protein expression by immunohistochemistry. Our data suggest that biallelic inactivation of SMAD4 through homozygous deletion does occur in a small percentage of IDCs, and support the hypothesis that inactivation of TGF-beta/SMAD4 signaling plays in a role in the development of a subset of IDC.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal/genética , Eliminación de Gen , Proteína Smad4/genética , Secuencia de Bases , Carcinoma Ductal/patología , Línea Celular Tumoral , Cartilla de ADN , Femenino , Homocigoto , Humanos , Invasividad Neoplásica
13.
Mamm Genome ; 16(10): 784-91, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16261420

RESUMEN

Microsatellite length polymorphisms are useful for the mapping of heritable traits in rats. Over 4000 such microsatellites have been characterized for 48 inbred rat strains and used successfully to map phenotypes that differ between strains. At present, however, it is difficult to use this microsatellite database for mapping phenotypes in selectively bred rats of unknown genotype derived from outbred populations because it is not immediately obvious which markers might differ between strains and be informative. We predicted that markers represented by many alleles among the known inbred rat strains would also be most likely to differ between selectively bred strains derived from outbred populations. Here we describe the development and successful application of a new genotyping tool (HUMMER) that assigns "heterozygosity" (Het) and "uncertainty" (Unc) scores to each microsatellite marker that corresponds to its degree of heterozygosity among the 48 genotyped inbred strains. We tested the efficiency of HUMMER on two rat strains that were selectively bred from an outbred Sprague-Dawley stock for either high or low activity in the forced swim test (SwHi rats and SwLo rats, respectively). We found that the markers with high Het and Unc scores allowed the efficient selection of markers that differed between SwHi and SwLo rats, while markers with low Het and Unc scores typically identified markers that did not differ between strains. Thus, picking markers based on Het and Unc scores is a valuable method for identifying informative microsatellite markers in selectively bred rodent strains derived from outbred populations.


Asunto(s)
Tamización de Portadores Genéticos/métodos , Marcadores Genéticos , Repeticiones de Microsatélite , Polimorfismo Genético , Ratas Sprague-Dawley/genética , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Biblioteca Genómica , Genotipo , Masculino , Ratones , Actividad Motora/genética , Ratas , Natación
14.
Am J Hum Genet ; 76(1): 91-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15551222

RESUMEN

Altered genetic recombination has been identified as the first molecular correlate of chromosome nondisjunction in both humans and model organisms. Little evidence has emerged to link maternal age--long recognized as the primary risk factor for nondisjunction--with altered recombination, although some studies have provided hints of such a relationship. To determine whether an association does exist, chromosome 21 recombination patterns were examined in 400 trisomy 21 cases of maternal meiosis I origin, grouped by maternal age. These recombination patterns were used to predict the chromosome 21 exchange patterns established during meiosis I. There was no statistically significant association between age and overall rate of exchange. The placement of meiotic exchange, however, differed significantly among the age groups. Susceptible patterns (pericentromeric and telomeric exchanges) accounted for 34% of all exchanges among the youngest class of women but only 10% of those among the oldest class. The pattern of exchanges among the oldest age group mimicked the pattern observed among normally disjoining chromosomes 21. These results suggest that the greatest risk factor for nondisjunction among younger women is the presence of a susceptible exchange pattern. We hypothesize that environmental and age-related insults accumulate in the ovary as a woman ages, leading to malsegregation of oocytes with stable exchange patterns. It is this risk, due to recombination-independent factors, that would be most influenced by increasing age, leading to the observed maternal age effect.


Asunto(s)
Cromosomas Humanos Par 21 , Síndrome de Down/genética , Edad Materna , Meiosis , No Disyunción Genética , Recombinación Genética , Adulto , Mapeo Cromosómico , Femenino , Marcadores Genéticos , Humanos , Embarazo , Factores de Riesgo
16.
Nat Genet ; 36(11): 1203-6, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15467721

RESUMEN

Intergenerational mixing of DNA through meiotic recombinations of homologous chromosomes during gametogenesis is a major event that generates diversity in the eukaryotic genome. We examined genome-wide microsatellite data for 23,066 individuals, providing information on recombination events of 14,140 maternal and paternal meioses each, and found a positive correlation between maternal recombination counts of an offspring and maternal age. We postulated that the recombination rate of eggs does not increase with maternal age, but that the apparent increase is the consequence of selection. Specifically, a high recombination count increased the chance of a gamete becoming a live birth, and this effect became more pronounced with advancing maternal age. Further support for this hypothesis came from our observation that mothers with high oocyte recombination rate tend to have more children. Hence, not only do recombinations have a role in evolution by yielding diverse combinations of gene variants for natural selection, but they are also under selection themselves.


Asunto(s)
Edad Materna , Recombinación Genética , Reproducción/genética , Adolescente , Adulto , Composición Familiar , Femenino , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Edad Paterna , Selección Genética
17.
Oncogene ; 23(2): 395-402, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14724568

RESUMEN

Krüppel-like factor 4 (KLF4 or GKLF) is an inhibitor of the cell cycle. The gene encoding KLF4 is localized on chromosome 9q, previously shown to exhibit allelic loss in colorectal cancer (CRC). In this study, we show that the mean level of KLF4 mRNA in a panel of 30 CRC was 52% that of paired normal colonic tissues. Similarly, the levels of KLF4 mRNA and protein in a panel of six established CRC cell lines were significantly lower than those of an untransformed colonic epithelial cell line. Using highly polymorphic DNA markers that flank the KLF4 locus, we found evidence for loss of heterozygosity (LOH) in two of eight surgically resected CRC specimens. In addition, LOH was observed in five of six CRC cell lines with one additional cell line exhibiting hemizygous deletion in the KLF4 gene. We also found that the 5'-untranslated region of KLF4 was hypermethylated in a subset of resected CRC specimens and cell lines. Lastly, the open-reading frame of KLF4 in two of three CRC cell lines examined contained several point mutations that resulted in a diminished ability to activate the p21(WAF1/Cip1) promoter. These findings indicate that KLF4 is a potential tumor suppressor gene in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/genética , Genes Supresores de Tumor/fisiología , Factores de Transcripción/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Western Blotting , Línea Celular Tumoral , Neoplasias del Colon/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Pérdida de Heterocigocidad/genética , Datos de Secuencia Molecular , Mutación Puntual/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
18.
Am J Hum Genet ; 72(2): 488-95, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12506337

RESUMEN

Robertsonian translocations (ROBs) involving chromosome 21 are found in approximately 5% of patients with Down syndrome (DS). The most common nonhomologous ROB in DS is rob(14q21q). Aberrant recombination is associated with nondisjunction (NDJ) leading to trisomy 21. Haplotype analysis of 23 patients with DS and de novo rob(14q21q) showed that all translocations and all nondisjoined chromosomes 21 were maternally derived. Meiosis II NDJ occurred in 21 of 23 families. For these, a ROB DS chromosome 21 genetic map was constructed and compared to a normal female map and a published trisomy 21 map derived from meiosis II NDJ. The location of exchanges differed significantly from both maps, with a significant shift to a more distal interval in the ROB DS map. The shift may perturb segregation, leading to the meiosis II NDJ in this study, and is further evidence for crossover interference. More importantly, because the event in the short arms that forms the de novo ROB influences the placement of chiasmata in the long arm, it is most likely that the translocation formation occurs through a recombination pathway in meiosis. Additionally, we have demonstrated that events that occur in meiosis I can influence events, such as chromatid segregation in meiosis II, many decades later.


Asunto(s)
Cromosomas Humanos Par 21 , No Disyunción Genética , Translocación Genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 14 , Intercambio Genético , Síndrome de Down/genética , Femenino , Marcadores Genéticos , Genoma Humano , Haplotipos , Humanos , Masculino , Meiosis , Repeticiones de Microsatélite , Modelos Genéticos , Linaje , Polimorfismo Genético , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...