Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Sci ; 29(1): 18, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255917

RESUMEN

Transversal structural elements in cross-striated muscles, such as the M-band or the Z-disc, anchor and mechanically stabilize the contractile apparatus and its minimal unit-the sarcomere. The ability of proteins to target and interact with these structural sarcomeric elements is an inevitable necessity for the correct assembly and functionality of the myofibrillar apparatus. Specifically, the M-band is a well-recognized mechanical and signaling hub dealing with active forces during contraction, while impairment of its function leads to disease and death. Research on the M-band architecture is focusing on the assembly and interactions of the three major filamentous proteins in the region, mainly the three myomesin proteins including their embryonic heart (EH) isoform, titin and obscurin. These proteins form the basic filamentous network of the M-band, interacting with each other as also with additional proteins in the region that are involved in signaling, energetic or mechanosensitive processes. While myomesin-1, titin and obscurin are found in every muscle, the expression levels of myomesin-2 (also known as M-protein) and myomesin-3 are tissue specific: myomesin-2 is mainly expressed in the cardiac and fast skeletal muscles, while myomesin-3 is mainly expressed in intermediate muscles and specific regions of the cardiac muscle. Furthermore, EH-myomesin apart from its role during embryonic stages, is present in adults with specific cardiac diseases. The current work in structural, molecular, and cellular biology as well as in animal models, provides important details about the assembly of myomesin-1, obscurin and titin, the information however about the myomesin-2 and -3, such as their interactions, localization and structural details remain very limited. Remarkably, an increasing number of reports is linking all three myomesin proteins and particularly myomesin-2 to serious cardiovascular diseases suggesting that this protein family could be more important than originally thought. In this review we will focus on the myomesin protein family, the myomesin interactions and structural differences between isoforms and we will provide the most recent evidence why the structurally and biophysically unexplored myomesin-2 and myomesin-3 are emerging as hot targets for understanding muscle function and disease.


Asunto(s)
Cardiopatías , Proteínas Musculares , Animales , Conectina/análisis , Conectina/genética , Conectina/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Sarcómeros/química , Sarcómeros/metabolismo
2.
Curr Opin Cell Biol ; 59: 34-39, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30981180

RESUMEN

Rab GTPases and their regulatory proteins play a crucial role in vesicle-mediated membrane trafficking. During vesicle membrane tethering Rab GTPases are activated by GEFs (guanine nucleotide exchange factors) and then inactivated by GAPs (GTPase activating proteins). Recent evidence shows that in addition to activating and inactivating Rab GTPases, both Rab GEFs and GAPs directly contribute to membrane tethering events during vesicle traffic. Other studies have extended the range of processes, in which Rabs function, and revealed roles for Rabs and their GAPs in the regulation of autophagy. Here, we will discuss these advances and the emerging relationship between the domain architectures of Rab GEFs and vesicle coat protein complexes linked with GTPases of the Sar, ARF and Arl families in animal cells.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/genética , Humanos
3.
Nucleic Acids Res ; 43(17): 8551-63, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26240379

RESUMEN

Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5' ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted 'steric exclusion' model for dsDNA unwinding, the active 3' ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5' passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases.


Asunto(s)
ADN Helicasas/química , ADN/química , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Papillomaviridae/enzimología , Estructura Terciaria de Proteína
4.
PLoS One ; 8(3): e58463, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516486

RESUMEN

The retinoblastoma susceptibility protein RB1 is a key regulator of cell proliferation and fate. RB1 operates through nucleating the formation of multi-component protein complexes involved in the regulation of gene transcription, chromatin structure and protein stability. Phosphorylation of RB1 by cyclin-dependent kinases leads to conformational alterations and inactivates the capability of RB1 to bind partner protein. Using small angle X-ray scattering in combination with single particle analysis of transmission electron microscope images of negative-stained material we present the first three-dimensional reconstruction of non-phosphorylated RB1 revealing an extended architecture and deduce the domain arrangement within the molecule. Phosphorylation results in an overt alteration of the molecular shape and dimensions, consistent with the transition to a compact globular architecture. The work presented provides what is to our knowledge the first description of the relative domain arrangement in active RB1 and predicts the molecular movement that leads to RB1 inactivation following protein phosphorylation.


Asunto(s)
Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Dispersión del Ángulo Pequeño
5.
Cancer Res ; 70(3): 996-1005, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20103632

RESUMEN

BRCA1, the breast cancer- and ovarian cancer-specific tumor suppressor, can be a transcriptional repressor or a transcriptional activator, depending on the promoter context. To identify the genes activated or repressed by BRCA1, we have analyzed microarray results from cells depleted of BRCA1 and revealed a number of genes regulated by BRCA1 on the level of transcription. Among the genes repressed by BRCA1, we have identified amphiregulin (AREG) and early growth response-1 (EGR1). Results indicate that BRCA1 regulates AREG transcription directly through binding to the AREG promoter, however, we could not detect BRCA1 on the EGR1 promoter, suggesting that EGR1 is indirectly regulated by BRCA1. In an attempt to identify the mechanism of the AREG transcriptional repression by BRCA1, we have mapped two independent BRCA1 response elements on the AREG located at positions -202/-182 and +19/+122. BRCA1 depletion leads to induction of the AREG protein. Taken together, our data build the connection between BRCA1 loss of function and AREG upregulation-a change in gene expression often observed in breast cancer.


Asunto(s)
Proteína BRCA1/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Anfirregulina , Proteína BRCA1/genética , Sitios de Unión/genética , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Familia de Proteínas EGF , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Glicoproteínas/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
EMBO J ; 27(14): 2006-17, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18566588

RESUMEN

The function of the Ets-1 transcription factor is regulated by two regions that flank its DNA-binding domain. A previously established mechanism for auto-inhibition of monomeric Ets-1 on DNA response elements with a single ETS-binding site, however, has not been observed for the stromelysin-1 promoter containing two palindromic ETS-binding sites. We present the structure of Ets-1 on this promoter element, revealing a ternary complex in which protein homo-dimerization is mediated by the specific arrangement of the two ETS-binding sites. In this complex, the N-terminal-flanking region is required for ternary protein-DNA assembly. Ets-1 variants, in which residues from this region are mutated, loose the ability for DNA-mediated dimerization and stromelysin-1 promoter transactivation. Thus, our data unravel the molecular basis for relief of auto-inhibition and the ability of Ets-1 to function as a facultative dimeric transcription factor on this site. Our findings may also explain previous data of Ets-1 function in the context of heterologous transcription factors, thus providing a molecular model that could also be valid for Ets-1 regulation by hetero-oligomeric assembly.


Asunto(s)
ADN/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-ets-1/química , Proteína Proto-Oncogénica c-ets-1/metabolismo , Línea Celular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Elementos Reguladores de la Transcripción , Activación Transcripcional
7.
Biophys J ; 94(1): 193-7, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17827227

RESUMEN

The upstream stimulatory factor 1 (USF1) belongs to the basic helix-loop-helix leucine zipper (b/HLH/Z) transcription factor family, recognizing the CACGTG DNA motive as a dimer and playing an important role in the regulation of transcription in a variety of cellular and viral promoters. In this study we investigate the USF1 b/HLH/Z domain and its complexes with DNA by small angle x-ray scattering. We present low resolution structural models of monomeric b/HLH/Z USF1 in the absence of DNA and USF1 dimeric (b/HLH/Z)(2)-DNA and tetrameric (b/HLH/Z)(4)-DNA(2) complexes. The data reveal a concentration-dependent USF1 dimer (b/HLH/Z)(2)-DNA-tetramer (b/HLH/Z)(4)-DNA(2) equilibrium. The ability of b/HLH/Z USF1 to form a tetrameric assembly on two distant DNA binding sites as a consequence of increased protein concentration suggest a USF1 concentration-dependant mechanism of transcription activation involving DNA loop formation.


Asunto(s)
ADN/química , ADN/ultraestructura , Modelos Químicos , Modelos Moleculares , Factores Estimuladores hacia 5'/química , Factores Estimuladores hacia 5'/ultraestructura , Difracción de Rayos X/métodos , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/ultraestructura , Simulación por Computador , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA