Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 194(1): 79-89, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21864511

RESUMEN

Propiconazole induces hepatocellular carcinomas and hepatocellular adenomas in mice and promotes liver tumors in rats. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicated that propiconazole induced oxidative stress. Here we sought to identify the source of the reactive oxygen species (ROS) induced by propiconazole using both AML12 immortalized mouse hepatocytes in culture and liver tissues from mice. We also sought to further characterize the nature and effects of ROS formation induced by propiconazole treatment in mouse liver. ROS was induced in AML12 cells by propiconazole as measured by fluorescence detection and its formation was ameliorated by N-acetylcysteine. Propiconazole induced glutathione-S-transferase (GSTα) protein levels and increased the levels of thiobarbituric acid reactive substances (TBARS) in AML12 cells. The TBARS levels were decreased by diphenylene iodonium chloride (DPIC), a cytochrome P450 (CYP) reductase inhibitor revealing the role of CYPs in ROS generation. It has been previously reported that Cyp2b and Cyp3a proteins were induced in mouse liver by propiconazole and that Cyp2b and Cyp3a proteins undergo uncoupling of their CYP catalytic cycle releasing ROS. Therefore, salicylic acid hydroxylation was used as probe for ROS formation using microsomes from mice treated with propiconazole. These studies showed that levels of 2,3-dihydroxybenzoic acid (an ROS derived metabolite) were decreased by ketoconazole, melatonin and DPIC. In vivo, propiconazole increased hepatic malondialdehyde levels and GSTα protein levels and had no effect on hepatic catalase or superoxide dismutase activities. Based on these observations we conclude that propiconazole induces ROS in mouse liver by increasing CYP protein levels leading to increased ROS levels. Our data also suggest that propiconazole induces the hydroxyl radical as a major ROS form.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Triazoles/toxicidad , Adenoma de Células Hepáticas/metabolismo , Adenoma de Células Hepáticas/patología , Animales , Células Cultivadas , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas
2.
Toxicol Appl Pharmacol ; 234(2): 143-55, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19010342

RESUMEN

Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels on cell proliferation in the mouse tumorigenesis process are discussed.


Asunto(s)
Fungicidas Industriales/toxicidad , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Tretinoina/metabolismo , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Nitrilos/toxicidad , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Ionización de Electrospray , Tretinoina/análogos & derivados , Triazoles/toxicidad
3.
Anal Biochem ; 355(2): 213-23, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16797471

RESUMEN

Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.


Asunto(s)
Benzo(a)pireno/análisis , Benzopirenos/análisis , Aductos de ADN/análisis , ADN/química , Radioisótopos de Fósforo/química , Quinonas/análisis , Oxidorreductasas de Alcohol/metabolismo , Benzo(a)pireno/análogos & derivados , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , ADN/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Nucleótidos de Desoxiadenina/análisis , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/análisis , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/análisis , Nucleótidos de Desoxiguanina/química , Espectroscopía de Resonancia Magnética , Mutágenos/metabolismo , Mutágenos/toxicidad , Quinonas/química , Quinonas/metabolismo , Especies Reactivas de Oxígeno/química , Estándares de Referencia
4.
Toxicol Appl Pharmacol ; 215(3): 274-84, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16730040

RESUMEN

Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR.


Asunto(s)
Antifúngicos/toxicidad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Triazoles/toxicidad , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos
5.
Toxicol Lett ; 164(1): 44-53, 2006 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-16406388

RESUMEN

This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods were used as measures of Cyp enzyme activities. Western analyses identified specific Cyp isoforms. Quantitative real-time reverse-transcription polymerase chain reaction (quantitative real time-RT-PCR) assays were used to quantitate the mRNA expression of specific Cyp genes induced by this conazole. Rats and mice were administered fluconazole 2, 25, or 50 mg/kg bw/d by gavage daily for 14 days. In rats, fluconazole treatment (50 mg/kg bw/d) significantly induced pentoxyresorufin O-dealkylation (PROD), benzyloxyresorufin O-dealkylation (BROD), and ethoxyresorufin O-dealkylation (EROD) hepatic microsomal activities. Fluconazole treatment significantly increased rat hepatic mRNA expression of CYP2B1 and CYP3A23/3A1 with dose-related responses. The highest dose of fluconazole gave a 128-fold induction of CYP2B1 and a 4.6-fold induction of CYP3A23/3A1 mRNA. CYP3A2 mRNA levels were also overexpressed 5.6-7.2-fold depending on dose. Western immunoblots of rat hepatic microsomal proteins identified Cyp isoforms: CYP1A1, CYP1A2, CYP2B1/2, CYP3A23/3A1, and Cyp3A2 with increased levels of CYP2B1/2 and CYP3A23/3A1 proteins. In mice, fluconazole induced BROD, PROD, EROD, and methoxyresorufin O-dealkylation hepatic microsomal activities after treatment with 25 and 50 mg/kg bw/d. Fluconazole increased mouse hepatic mRNA expression of Cyp2b10 (1.9-fold) and Cyp3a11 (2.6-fold) in the 50 mg/kg bw/d treatment group. In summary, these results indicated that fluconazole, a triazole-containing conazole, clearly induced CYP2B and CYP3A families of isoforms in rat liver and Cyp2b and Cyp3a families of isoforms in mouse liver.


Asunto(s)
Antifúngicos/efectos adversos , Sistema Enzimático del Citocromo P-450/genética , Fluconazol/efectos adversos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Western Blotting , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Toxicol Lett ; 155(2): 277-87, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15603923

RESUMEN

Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fungicidas Industriales/toxicidad , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Triazoles/toxicidad , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Chem Res Toxicol ; 17(12): 1591-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15606134

RESUMEN

The environmental pollutant 6-nitrochrysene (6-NC) is a potent carcinogen in several animal models including the rat mammary gland. 6-NC can be activated to intermediates that can damage DNA by simple nitroreduction, ring oxidation, or a combination of ring oxidation and nitroreduction. Only the first pathway (nitroreduction) has been clearly established, and DNA adducts derived from this pathway have been fully characterized in in vitro systems. We also showed previously that the second pathway, ring oxidation leading to the formation of the bay region diol epoxide of 6-NC, is not responsible for the formation of the major DNA adduct in the mammary gland of rats treated with 6-NC. Therefore, in the present study, we explored the validity of the third pathway that involves the combination of both ring oxidation and nitroreduction of 6-NC to form trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C). During the course of this study, we synthesized for the first time 1,2-DHD-6-NHOH-C, N-(deoxyguanosin-8-yl)-6-aminochrysene, and N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene. Incubation of 1,2-DHD-6-NHOH-C with calf thymus DNA resulted in the formation of three adducts. Upon LC/MS combined with 1H NMR analyses, the first eluting adduct was identified as 5-(deoxyguanosin-N2-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene [5-(dG-N2-yl)-1,2-DHD-6-AC], the second eluting adduct was identified as N-(deoxyguanosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene, and the last was identified as N-(deoxyinosin-8-yl)-1,2-dihydroxy-1,2-dihydro-6-aminochrysene. We also report here for the first time that among those adducts identified in vitro, only 5-(dG-N2-yl)-1,2-DHD-6-AC is the major DNA lesion detected in the mammary glands of rats treated with 6-NC.


Asunto(s)
Crisenos/química , Crisenos/toxicidad , Aductos de ADN/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Contaminantes Ambientales/toxicidad , Glándulas Mamarias Animales/química , Glándulas Mamarias Animales/efectos de los fármacos , Animales , Carcinógenos Ambientales/metabolismo , Carcinógenos Ambientales/toxicidad , Crisenos/metabolismo , Contaminantes Ambientales/metabolismo , Femenino , Ratas
8.
Chem Res Toxicol ; 17(6): 827-38, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15206904

RESUMEN

Benzo[a]pyrene (B[a]P) is an archetypal member of the family of polycyclic aromatic hydrocarbons (PAHs) and is a widely distributed environmental pollutant. B[a]P is known to induce cancer in animals, and B[a]P-containing complex mixtures are human carcinogens. B[a]P exerts its genotoxic and carcinogenic effects through metabolic activation forming reactive intermediates that damage DNA. DNA adduction by B[a]P is a complex phenomenon that involves the formation of both stable and unstable (depurinating) adducts. One pathway by which B[a]P can mediate genotoxicity is through the enzymatic formation of B[a]P-7,8-quinone (BPQ) from B[a]P-7,8-diol by members of the aldo-keto-reductase (AKR) family. Once formed, BPQ can act as a reactive Michael acceptor that can alkylate cellular nucleophiles including DNA and peptides. Earlier studies have reported on the formation of stable and depurinating adducts from the reaction of BPQ with DNA and nucleosides, respectively. However, the syntheses and characterization of the stable adducts from these interactions have not been addressed. In this study, the reactivity of BPQ toward 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) nucleosides under physiological pH conditions is examined. The identification and characterization of six novel BPQ-nucleoside adducts obtained from the reaction of BPQ and dG or dA in a mixture of phosphate buffer and dimethylformamide are reported. The structures of these adducts were determined by ultraviolet spectroscopy, electrospray mass spectrometry, and NMR experiments including (1)H, (13)C, two-dimensional COSY, one-dimensional NOE, ROESY, HMQC, HSQC, and HMBC. The reaction of BPQ with dG afforded four unique Michael addition products: two diastereomers of 8-N(1),9-N(2)-deoxyguanosyl-8,10-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dG(1,2)) and two diastereomers of 10-(N(2)-deoxyguanosyl)-9,10-dihydro-9-hydroxybenzo[a]pyrene-7,8-dione (BPQ-dG(3,4)). The BPQ-dG(1,2)( )()adducts suggest a 1,6-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, a 1,4-Michael addition of water, and an internal cyclization. The BPQ-dG(3,4)( )()adducts suggest a 1,4-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, and a 1,6-Michael addition of water. Under similar but extended reaction conditions, the reaction of BPQ with dA produced only one diastereomeric pair of adducts identified as 8-N(6),10-N(1)-deoxyadenosyl-8,9-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dA(1,2)). The BPQ-dA(1,2)( )()adducts suggest a 1,4-Michael addition reaction of dA, an oxidation of the hydroquinone to the quinone, a 1,6-Michael addition of water, and an internal cyclization. As considerable efforts have been placed in documenting the genotoxic effects of BPQ, this first report of the identification and characterization of these stable adducts of BPQ formed under physiological pH conditions is expected to contribute significantly to the area of BPQ-mediated genotoxicity and carcinogenesis.


Asunto(s)
Benzo(a)pireno/análisis , Benzopirenos/análisis , Aductos de ADN/análisis , Desoxiadenosinas/análisis , Desoxiguanosina/análisis , Biotransformación , Cromatografía Líquida de Alta Presión , Dimetilformamida , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
9.
Chem Res Toxicol ; 15(12): 1627-34, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12482246

RESUMEN

Arsenic is a human carcinogen; however, the mechanisms of arsenic's induction of carcinogenic effects have not been identified clearly. We have shown previously that monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) are genotoxic and can damage supercoiled phiX174 DNA and the DNA in peripheral human lymphocytes in culture. These trivalent arsenicals are biomethylated forms of inorganic arsenic and have been detected in the urine of subjects exposed to arsenite and arsenate. We show here by molecular, chemical, and physical methods that reactive oxygen species (ROS) are intermediates in the DNA-damaging activities of MMA(III) and DMA(III). Using the phiX174 DNA nicking assay we found that the ROS inhibitors Tiron, melatonin, and the vitamin E analogue Trolox inhibited the DNA-nicking activities of both MMA(III) and DMA(III) at low micromolar concentrations. The spin trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) also was effective at preventing the DNA nicking induced by MMA(III) and DMA(III). ESR spectroscopy studies using DMPO identified a radical as a ROS intermediate in the DNA incubations with DMA(III). This radical adduct was assigned to the DMPO-hydroxyl free radical adduct on the basis of comparison of the observed hyperfine splitting constants and line widths with those reported in the literature. The formation of the DMPO-hydroxyl free radical adduct was dependent on time and the presence of DMA(III) and was completely inhibited by Tiron and Trolox and partially inhibited by DMSO. Using electrospray mass spectrometry, micromolar concentrations of DMA(V) were detected in the DNA incubation mixtures with DMA(III). These data are consistent with the conclusions that the DNA-damaging activity of DMA(III) is an indirect genotoxic effect mediated by ROS-formed concomitantly with the oxidation of DMA(III) to DMA(V).


Asunto(s)
Arsénico/toxicidad , Ácido Cacodílico/toxicidad , Daño del ADN , Metilación de ADN/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Bacteriófago phi X 174/química , Bacteriófago phi X 174/efectos de los fármacos , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/química , Ácido Cacodílico/metabolismo , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacología , ADN Superhelicoidal/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Depuradores de Radicales Libres/farmacología , Humanos , Etiquetado Corte-Fin in Situ/métodos , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/química , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
10.
Mutat Res ; 521(1-2): 91-102, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12438007

RESUMEN

Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol-treated cells. In summary, this study provides evidence for the DNA damaging and morphological cell transforming activities of the K-region dihydrodiol of B[a]P, in the absence of covalent stable DNA adducts. While trans-B[a]P-4,5-diol and B[a]P both induce morphological cell transformation, their activities as DNA damaging agents differ, both qualitatively and quantitatively. In concert with the morphological cell transformation activities of other K-region dihydrodiols of PAHs, these data suggest a new mechanism/pathway for the morphological cell transforming activities of B[a]P and its metabolites.


Asunto(s)
Benzo(a)pireno/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Aductos de ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dihidroxidihidrobenzopirenos/química , Dihidroxidihidrobenzopirenos/toxicidad , Animales , Benzo(a)pireno/química , Células Cultivadas , Ensayo Cometa , Aductos de ADN/química , Daño del ADN/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Marcaje Isotópico , Mamíferos , Ratones , Pruebas de Mutagenicidad/métodos , Radioisótopos de Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...