Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 629, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789481

RESUMEN

Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.


Asunto(s)
Endosomas , Células Endoteliales , Fibronectinas , Integrina alfa5 , Neuropilina-1 , Neuropilina-2 , Proteómica , Proteína Activadora de GTPasa p120 , Neuropilina-1/metabolismo , Neuropilina-1/genética , Humanos , Integrina alfa5/metabolismo , Integrina alfa5/genética , Endosomas/metabolismo , Proteómica/métodos , Neuropilina-2/metabolismo , Neuropilina-2/genética , Animales , Fibronectinas/metabolismo , Células Endoteliales/metabolismo , Proteína Activadora de GTPasa p120/metabolismo , Proteína Activadora de GTPasa p120/genética , Transporte de Proteínas , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Integrinas
2.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697134

RESUMEN

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Asunto(s)
Aterosclerosis , Arteritis de Células Gigantes , Infarto del Miocardio , Arteritis de Takayasu , Humanos , Receptores de Somatostatina , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Vasos Coronarios/patología , Aterosclerosis/diagnóstico por imagen , Radiofármacos/farmacología
3.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35994249

RESUMEN

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ataxias Espinocerebelosas , Adulto , Animales , Humanos , Músculo Liso Vascular/patología , Enfermedades Cardiovasculares/patología , Proliferación Celular , Aterosclerosis/patología , Fenotipo , Ataxias Espinocerebelosas/patología , Miocitos del Músculo Liso/patología , Células Cultivadas
4.
Nature ; 597(7874): 92-96, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433968

RESUMEN

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Proteoglicanos de Heparán Sulfato/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antígeno de Maduración de Linfocitos B/metabolismo , Sitios de Unión , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/mortalidad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteína Activadora Transmembrana y Interactiva del CAML/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/sangre , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/deficiencia
6.
Front Cell Dev Biol ; 8: 395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528960

RESUMEN

Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on ß3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.

7.
J Cell Sci ; 133(7)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269093

RESUMEN

ADAMTS-1 is an extracellular protease with critical roles in organogenesis and angiogenesis. Here we demonstrate a functional convergence of ADAMTS-1 and the transmembrane heparan sulfate proteoglycan syndecan-4 in influencing adhesion, migration and angiogenesis. Knockdown of ADAMTS-1 in endothelial cells resulted in a parallel reduction in cell surface syndecan-4, attributable to increased matrix metalloproteinase-9 (MMP9) activity. Knockdown of either ADAMTS-1 or syndecan-4 increased cellular responses to vascular endothelial growth factor A isoform VEGFA164, and increased ex vivo aortic ring microvessel sprouting. On fibronectin, knockdown of either protein enhanced migration and promoted formation of long α5 integrin-containing fibrillar adhesions. However, integrin α5 null cells still showed increased migration in response to ADAMTS-1 and syndecan-4 siRNA treatment. Plating of naïve endothelial cells on cell-conditioned matrix from ADAMTS-1 and syndecan-4 knockdown cells demonstrated that the altered adhesive behaviour was matrix dependent, and this correlated with a lack of expression of fibulin-1: an extracellular matrix co-factor for ADAMTS-1 that is known to inhibit migration. These findings support the notion that ADAMTS-1 and syndecan-4 are functionally interconnected in regulating cell migration and angiogenesis, via collaboration with MMP9 and fibulin-1.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Sindecano-4 , Factor A de Crecimiento Endotelial Vascular , Proteína ADAMTS1 , Animales , Adhesión Celular , Movimiento Celular , Células Endoteliales , Humanos , Ratones , Neovascularización Patológica , Sindecano-1 , Sindecano-2 , Sindecano-4/genética
8.
Methods Mol Biol ; 2043: 179-193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31463912

RESUMEN

As extracellular enzymes that interact extensively with extracellular matrix (ECM) components, several ADAMTS enzymes are understood to influence aspects of cell adhesion to the ECM and the ability of cells to migrate. A standard approach to investigate the involvement of an ADAMTS in these aspects of mammalian cell behavior involves siRNA-mediated knockdown of the expression of the gene of interest in cell culture, followed by methods for quantification of migratory or adhesive behavior. We describe here two methods for cell migration quantification: a time-lapse videomicroscopy method suitable for measuring single cell migration in sparse cultures that allows for determination of migration speed and directionality (persistence), and scratch wound assays for directional migration in confluent cell monolayers. We also present assays to quantify total adhesion to ECM components, as well as more detailed visualization and quantification of focal adhesion structures.


Asunto(s)
Proteínas ADAMTS/genética , Matriz Extracelular/metabolismo , ARN Interferente Pequeño/farmacología , Proteínas ADAMTS/antagonistas & inhibidores , Animales , Adhesión Celular , Movimiento Celular , Células Cultivadas , Adhesiones Focales/metabolismo , Humanos , Ratones , Microscopía por Video , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...