Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 173(6): 1370-1384.e16, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856955

RESUMEN

The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex.


Asunto(s)
Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Neurogénesis , Neuronas/metabolismo , Receptor Notch2/genética , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Células-Madre Neurales/metabolismo , Transducción de Señal
2.
J Hum Genet ; 63(7): 847-850, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29717186

RESUMEN

Intellectual disability (ID) and autism spectrum disorders are complex neurodevelopmental disorders occurring among all ethnic and socioeconomic groups. Pathogenic variants in the neurite extension and migration factor (NEXMIF) gene (formerly named KIAA2022) on the X chromosome are responsible for ID, autistic behavior, epilepsy, or dysmorphic features in males. Most affected females described had a milder phenotype or were asymptomatic obligate carriers. We report here for the first time mother-to-son transmission of a novel NEXMIF truncating variant without X-inactivation skewing in the blood. Truncating gene variant leads to symptomatic mother to severely affected son transmission. Our findings emphasize that NEXMIF sequencing should be strongly considered in patients with unexplained autism spectrum disorder, ID, and epilepsy, irrespective of gender. Such testing could increase our knowledge of the pathogenicity of NEXMIF variants and improve genetic counseling.


Asunto(s)
Trastorno del Espectro Autista/genética , Secuencia de Bases , Epilepsia/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Eliminación de Secuencia , Adulto , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/fisiopatología , Niño , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Expresión Génica , Hemicigoto , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/fisiopatología , Masculino , Herencia Materna , Linaje , Índice de Severidad de la Enfermedad , Inactivación del Cromosoma X
3.
Rev Med Suisse ; 14(603): 822-824, 2018 Apr 18.
Artículo en Francés | MEDLINE | ID: mdl-29668143

RESUMEN

The Unité Santé Jeunes of the Geneva University Hospitals offers multidisciplinary care to young people between the ages of 12 years and 25 years, including unaccompanied minor migrant adolescents. The psychiatrist and child psychiatrist of the unit participate actively. These young people are primarily teenagers, but it is clear from our experience that their care has some specificities and require an adaptation of the framework. The aim of this article is to open the reflection on socio-legal-educational support and the care to offer them to help them feeling secure and a different psychotherapeutic space. Fostering personal resources by building resilience and increasing self-esteem, the adolescent will thus be able to positive experiences encouraging him in his future project.


L'Unité santé jeunes des Hôpitaux universitaires de Genève offre une prise en charge multidisciplinaire aux jeunes de 12 à 25 ans, dont des adolescents migrants mineurs non accompagnés. Les (pédo)psychiatres de l'Unité y participent activement. Ces jeunes restent avant tout des adolescents, il ressort néanmoins de notre expérience que leur prise en soins présente certaines spécificités et nécessite une adaptation du cadre. L'objet de cet article est d'ouvrir la réflexion sur l'accompagnement socio-juridico-éducatif et le soin à leur offrir pour apporter contenance, sécurité, ainsi qu'un espace psychothérapeutique différent. Favorisant les ressources personnelles en renforçant sa capacité de résilience et en augmentant son estime de soi, le jeune pourra ainsi vivre des expériences positives l'encourageant dans son projet d'avenir.

4.
Autism Res ; 7(5): 617-22, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24909855

RESUMEN

Autism spectrum disorder (ASD) results from interactions of genetic and environmental factors. The MET proto-oncogene has been identified as a candidate gene for autism susceptibility, and is implicated in neurodevelopment and social brain circuitry. Here, we describe the first case of a familial mutation of MET, consisting of an interstitial genomic deletion removing exons 12 through 15, causing a frameshift and premature stop codon, with evidence of nonsense-mediated mRNA decay. On the other allele, patients carried the C allele of the MET promoter rs1858830 polymorphism, known to decrease MET expression and previously associated with autism susceptibility. The heterozygous mutation was associated with autism in one patient, and language and social impairment in a sibling. Our observations delineate the phenotypic spectrum associated with a clearly defined, very likely complete loss of function mutation of MET. Incomplete penetrance in this family was consistent with MET as a partial susceptibility gene for ASD. Implication of MET in normal and pathological brain development opens new perspectives for understanding the pathophysiology of autism and for eventual therapeutical clues.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Mutación/genética , Proteínas Proto-Oncogénicas c-met/genética , Niño , Exones/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Reacción en Cadena de la Polimerasa/métodos , Proto-Oncogenes Mas , Eliminación de Secuencia/genética
5.
PLoS Genet ; 9(10): e1003888, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204302

RESUMEN

We describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings. TRMT10A is ubiquitously expressed but enriched in brain and pancreatic islets, consistent with the tissues affected in this syndrome. In situ hybridization studies showed that TRMT10A is expressed in human embryonic and fetal brain. TRMT10A is the mammalian ortholog of S. cerevisiae TRM10, previously shown to catalyze the methylation of guanine 9 (m(1)G9) in several tRNAs. Consistent with this putative function, in silico topology prediction indicated that TRMT10A has predominant nuclear localization, which we experimentally confirmed by immunofluorescence and confocal microscopy. TRMT10A localizes to the nucleolus of ß- and non-ß-cells, where tRNA modifications occur. TRMT10A silencing induces rat and human ß-cell apoptosis. Taken together, we propose that TRMT10A deficiency negatively affects ß-cell mass and the pool of neurons in the developing brain. This is the first study describing the impact of TRMT10A deficiency in mammals, highlighting a role in the pathogenesis of microcephaly and early onset diabetes. In light of the recent report that the type 2 diabetes candidate gene CDKAL1 is a tRNA methylthiotransferase, the findings in this family suggest broader relevance of tRNA methyltransferases in the pathogenesis of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , ARNt Metiltransferasas/genética , Adulto , Edad de Inicio , Animales , Apoptosis/genética , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Ligamiento Genético , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Linaje , Ratas , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/deficiencia
6.
J Med Genet ; 50(9): 585-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23812909

RESUMEN

BACKGROUND: Harstfield syndrome is the rare and unique association of holoprosencephaly (HPE) and ectrodactyly, with or without cleft lip and palate, and variable additional features. All the reported cases occurred sporadically. Although several causal genes of HPE and ectrodactyly have been identified, the genetic cause of Hartsfield syndrome remains unknown. We hypothesised that a single key developmental gene may underlie the co-occurrence of HPE and ectrodactyly. METHODS: We used whole exome sequencing in four isolated cases including one case-parents trio, and direct Sanger sequencing of three additional cases, to investigate the causative variants in Hartsfield syndrome. RESULTS: We identified a novel FGFR1 mutation in six out of seven patients. Affected residues are highly conserved and are located in the extracellular binding domain of the receptor (two homozygous mutations) or the intracellular tyrosine kinase domain (four heterozygous de novo variants). Strikingly, among the six novel mutations, three are located in close proximity to the ATP's phosphates or the coordinating magnesium, with one position required for kinase activity, and three are adjacent to known mutations involved in Kallmann syndrome plus other developmental anomalies. CONCLUSIONS: Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome, consistent with the known roles of FGFR1 in vertebrate ontogeny and conditional Fgfr1-deficient mice. Our study shows that, in humans, lack of accurate FGFR1 activation can disrupt both brain and hand/foot midline development, and that FGFR1 loss-of-function mutations are responsible for a wider spectrum of clinical anomalies than previously thought, ranging in severity from seemingly isolated hypogonadotropic hypogonadism, through Kallmann syndrome with or without additional features, to Hartsfield syndrome at its most severe end.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Dedos/anomalías , Deformidades Congénitas de la Mano/genética , Holoprosencefalia/genética , Mutación INDEL/genética , Discapacidad Intelectual/genética , Deformidades Congénitas de las Extremidades/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Secuencia de Bases , Sitios de Unión , Labio Leporino/enzimología , Fisura del Paladar/enzimología , Exoma , Femenino , Genómica , Deformidades Congénitas de la Mano/enzimología , Holoprosencefalia/enzimología , Humanos , Discapacidad Intelectual/enzimología , Deformidades Congénitas de las Extremidades/enzimología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Análisis de Secuencia de ADN
7.
Neuron ; 77(3): 440-56, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395372

RESUMEN

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Asunto(s)
Encéfalo/citología , Células Madre Embrionarias/citología , Red Nerviosa/fisiología , Células Madre Pluripotentes/fisiología , Células Piramidales/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Factores de Edad , Animales , Axones/fisiología , Bromodesoxiuridina , Calcio/metabolismo , Diferenciación Celular , Trasplante de Células , Células Cultivadas , Dendritas/fisiología , Potenciales Evocados/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Feto , Colorantes Fluorescentes/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Red Nerviosa/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Embarazo , Células Piramidales/citología , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Potenciales Sinápticos/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Tirosina 3-Monooxigenasa/metabolismo , Valina/análogos & derivados , Valina/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
8.
Hum Mol Genet ; 21(24): 5306-17, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22983954

RESUMEN

Several genes expressed at the centrosome or spindle pole have been reported to underlie autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder consisting of an important brain size reduction present since birth, associated with mild-to-moderate mental handicap and no other neurological feature nor associated malformation. Here, we report a mutation of CASC5 (aka Blinkin, or KNL1, or hSPC105) in MCPH patients from three consanguineous families, in one of which we initially reported the MCPH4 locus. The combined logarithm of odds score of the three families was >6. All patients shared a very rare homozygous mutation of CASC5. The mutation induced skipping of exon 18 with subsequent frameshift and truncation of the predicted protein. CASC5 is part of the KMN network of the kinetochore and is required for proper microtubule attachment to the chromosome centromere and for spindle-assembly checkpoint (SAC) activation during mitosis. Like MCPH gene ASPM, CASC5 is upregulated in the ventricular zone (VZ) of the human fetal brain. CASC5 binds BUB1, BUBR1, ZWINT-1 and interestingly it binds to MIS12 through a protein domain which is truncated by the mutation. CASC5 localized at the equatorial plate like ZWINT-1 and BUBR1, while ASPM, CEP152 and PCTN localized at the spindle poles in our patients and in controls. Comparison of primate and rodent lineages indicates accelerated evolution of CASC5 in the human lineage. Our data provide strong evidence for CASC5 as a novel MCPH gene, and underscore the role of kinetochore integrity in proper volumetric development of the human brain.


Asunto(s)
Cinetocoros/metabolismo , Microcefalia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Mitosis/fisiología , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Cell ; 149(4): 923-35, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22559944

RESUMEN

Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Duplicación de Gen , Neuronas/citología , Duplicaciones Segmentarias en el Genoma , Animales , Movimiento Celular , Espinas Dendríticas/metabolismo , Evolución Molecular , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Estructura Terciaria de Proteína , Especificidad de la Especie
10.
PLoS One ; 6(3): e17753, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21445258

RESUMEN

The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.


Asunto(s)
Evolución Biológica , Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica , Humanos , Hibridación in Situ , Secuencias Reguladoras de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
PLoS Biol ; 6(6): e140, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18547142

RESUMEN

Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Evolución Molecular , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas de Ciclo Celular/análisis , Línea Celular , Fosfatasas de Especificidad Dual/análisis , Duplicación de Gen , Genes Duplicados , Hominidae/fisiología , Humanos , Datos de Secuencia Molecular , Isoformas de Proteínas/genética
12.
Nature ; 443(7108): 167-72, 2006 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16915236

RESUMEN

The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , ARN no Traducido/genética , Envejecimiento/genética , Animales , Secuencia de Bases , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/anatomía & histología , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Humanos , Macaca/genética , Datos de Secuencia Molecular , Mutación/genética , Neocórtex/anatomía & histología , Neocórtex/embriología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Conformación de Ácido Nucleico , Especificidad de Órganos , Estabilidad del ARN , ARN no Traducido/química , ARN no Traducido/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...