Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38198741

RESUMEN

Despite Phe being an indispensable amino acid for cats, the minimum Phe requirement for adult cats has not been empirically defined. The objective of study 1 was to determine the minimum Phe requirement, where Tyr is in excess, in adult cats using the direct amino acid oxidation (DAAO) technique. Four adult male cats were used in an 8 × 4 Latin rectangle design. Cats were adapted to a basal diet for 7 d, top dressed with Phe to meet 140% of the adequate intake (NRC, 2006. Nutrient requirements of dogs and cats. Washington, DC: Natl. Acad. Press). Cats were randomly assigned to one of eight experimental Phe diets (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). Following 1 d of diet adaptation, individual DAAO studies were performed. During each DAAO study, cats were placed into individual indirect calorimetry chambers, and 75% of the cat's daily meal was divided into 13 equal meals supplied with a dose of L-[1-13C]-Phe. Oxidation of L-[1-13C]-Phe (F13CO2) during isotopic steady state was determined from the enrichment of 13CO2 in breath. Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Phe on 13CO2. The mean population minimum requirement for Phe was estimated at 0.32% DM and the upper 95% population confidence limit at 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. In study 2, the effects of a bolus dose of Phe (44 mg kg-1 BW) on food intake, gastric emptying (GE), and macronutrient metabolism were assessed in a crossover design with 12 male cats. For food intake, cats were given Phe 15 min before 120% of their daily food was offered and food intake was measured. Treatment, day, and their interaction were evaluated using PROC GLIMMIX in SAS. Treatment did not affect any food intake parameters (P > 0.05). For GE and macronutrient metabolism, cats were placed into individual indirect calorimetry chambers, received the same bolus dose of Phe, and 15 min later received 13C-octanoic acid (5 mg kg-1 BW) on 50% of their daily food intake. Breath samples were collected to measure 13CO2. The effect of treatment was evaluated using PROC GLIMMIX in SAS. Treatment did not affect total GE (P > 0.05), but cats receiving Phe tended to delay time to peak enrichment (0.05 < P ≤ 0.10). Overall, Phe at a bolus dose of 44 mg kg-1 BW had no effect on food intake, GE, or macronutrient metabolism. Together, these results suggest that the bolus dose of Phe used may not be sufficient to elicit a GE response, but a study with a greater number of cats and greater food intake is warranted.


Two studies were conducted to evaluate 1) the minimum requirement for dietary Phe and 2) the effects of Phe on gastric emptying (GE) and food intake in adult cats. In study 1, the minimum Phe requirement was estimated using the direct amino acid oxidation (DAAO) technique. Four cats were used and received all diets in random order in a Latin rectangle design (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). The minimum Phe requirement, in the presence of excess of Tyr, for adult cats was estimated to be 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors; higher than current recommendations set in place by the National Research Council and the American Association of Feed Control Officials. In study 2, we first validated the use of the 13C-octanoic acid breath test (13C-OABT) in cats. Then, the effects of an oral bolus of Phe on food intake, GE, and macronutrient metabolism were evaluated. Phe supplementation did not influence food intake, macronutrient metabolism, or total GE, but tended to delay the time to peak GE.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Gatos , Masculino , Animales , Perros , Aminoácidos/metabolismo , Fenilalanina/farmacología , Fenilalanina/metabolismo , Vaciamiento Gástrico , Dieta/veterinaria , Nutrientes , Ingestión de Alimentos
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38092464

RESUMEN

There is a lack of empirical data on the dietary Met requirement, in the presence of Cys or cystine, in adult cats. Thus, the aim of this study was to determine the Met requirement, in the presence of excess Cys, in adult cats at maintenance using the indicator amino acid oxidation (IAAO) technique. Six adult neutered male cats were initially selected and started the study. Cats were adapted to the basal diet sufficient in Met (0.24% dry matter, DM) for 14 d prior to being randomly allocated to one of eight dietary levels of Met (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% DM). Different dietary Met concentrations were achieved by supplementing the basal diet with Met solutions. Alanine was additionally included in the solutions to produce isonitrogenous and isoenergetic diets. Cats underwent a 2-d adaptation period to each experimental diet prior to each IAAO study day. On IAAO study days, 13 meals were offered corresponding to 75% of each cat's daily food allowance. The remaining 25% of their daily food intake was offered after each IAAO study. A bolus dose of NaH13CO3 (0.44 mg kg-1) and l-[1-13C]-phenylalanine (13C-Phe; 4.8 mg kg-1) were provided in fifth and sixth meals, respectively, followed by a constant dose of 13C-Phe (1.04 mg kg-1) in the next meals. Breath samples were collected and total production of 13CO2 was measured every 25 min through respiration calorimetry chambers. Steady state of 13CO2 achieved over at least three breath collections was used to calculate oxidation of 13C-Phe (F13CO2). Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Met on 13CO2. Two cats were removed from the study as they did not eat all meals, which is required to achieve isotopic steady. A breakpoint for the mean Met requirement, with excess of Cys, was identified at 0.24% DM (22.63 mg kg-1) with an upper 95% confidence limit of 0.40% DM (37.71 mg·kg-1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The estimated Met requirement, in the presence of excess of Cys, is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


The objective of this study was to determine the minimum Met requirement, when Cys was provided in excess, of adult cats using a highly sensitive and noninvasive technique, the indicator amino acid oxidation (IAAO). Six adult cats were fed experimental diets with varying levels of methionine (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% on a dry matter [DM] basis) for 2 d prior to each IAAO study day. Although not all cats completed the study, a breakpoint was still defined in the statistical models applied, resulting in an estimated minimum Met requirement of 0.40% DM (37.71 mg kg−1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The Met requirement, in the presence of excess of Cys, estimated in our study is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Masculino , Gatos , Animales , Perros , Aminoácidos/metabolismo , Metionina/metabolismo , Fenilalanina/metabolismo , Oxidación-Reducción , Racemetionina/metabolismo , Dieta/veterinaria , Necesidades Nutricionales
3.
J Nutr Sci ; 12: e62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313346

RESUMEN

The present study aimed to develop an isotope protocol to achieve equilibrium of 13CO2 in breath of cats during carbon oxidation studies using L-[1-13C]-Phenylalanine (L-[1-13C]-Phe), provided orally in repeated meals. One adult male cat was used in two experiments. In each experiment, three isotope protocols were tested in triplicate using the same cat. During carbon oxidation study days, the cat was offered thirteen small meals to achieve and maintain a physiological fed state. In experiment 1, the isotope protocols tested (A, B and C) had a similar priming dose of NaH13CO3 (0⋅176 mg/kg; offered in meal 6), but different priming [4⋅8 mg/kg (A) or 9⋅4 mg/kg (B and C); provided in meal 6] and constant [1⋅04 mg/kg (A and B) or 2⋅4 mg/kg (C); offered in meals 6-13] doses of L-[1-13C]-Phe. In experiment 2, the isotope protocols tested (D, E and F) had similar priming (4⋅8 mg/kg; provided in meal 5) and constant (1⋅04 mg/kg; provided in meals 5-13) doses of L-[1-13C]-Phe, but increasing priming doses of NaH13CO3 (D: 0⋅264, E: 0⋅352, F: 0⋅44 mg/kg; provided in meal 4). Breath samples were collected using respiration chambers (25-min intervals) and CO2 trapping to determine 13CO2:12CO2. Isotopic steady state was defined as the enrichment of 13CO2, above background samples, remaining constant in at least the last three samples. Treatment F resulted in the earliest achievement of 13CO2 steady state in the cat's breath. This feeding and isotope protocol can be used in future studies aiming to study amino acid metabolism in cats.


Asunto(s)
Dióxido de Carbono , Carbono , Masculino , Gatos , Animales , Isótopos , Comidas
4.
J Anim Sci ; 100(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36029013

RESUMEN

Yeast-derived ß-glucans impact immunity, though their effects on gut permeability and inflammation are less understood. Most research has investigated other components of the yeast cell wall, such as the prebiotic mannan- and fructo-oligosaccharides. The objective of this study was to assess the effects of feeding a concentrated yeast product on markers of inflammation (serum amyloid A [SAA] and haptoglobin [Hp]) and oxidative status (malondialdehyde [MDA]), fecal products of fermentation, and gut permeability. Nineteen privately owned domestic Siberian huskies, and one Alaskan husky (9 females: 5 intact, 4 spayed; 11 males: 3 intact, 8 neutered), with an average age of 4.8 ± 2.6 yr and body weight (BW) of 25.6 ± 4.1 kg, were used in this study. Dogs were blocked and randomly allocated to one of two diet groups. Ten dogs received a dry extruded diet. The other 10 received the same diet top dressed with yeast for a daily ß-glucan dose of 7 mg/kg BW for 10 wk. Fecal collection, for evaluation of fecal metabolites, and scoring occurred weekly. Gut permeability was assessed using the chromium-labeled ethylenediamine tetra-acetic acid (Cr-EDTA) and iohexol markers prior to the initiation of dietary treatment and after 10 wk of treatment. Blood samples were collected premarker administration and 0.5, 1, 2, 3, 4, 5, and 6 h postadministration. Fasting concentrations of SAA, Hp, and MDA were measured on weeks -1, 2, 4, and 8. Incremental area under the curve (I-AUC) was calculated for serum iohexol and Cr-EDTA concentrations. All data were analyzed using PROC GLIMMIX of SAS with dog as random effect, and week as fixed effect and repeated measure. Dogs receiving treatment tended to have decreased I-AUC of Iohexol (P = 0.10) and Cr-EDTA (P = 0.06) between baseline and cessation of treatment compared to the change over time in I-AUC for control (Ctl) dogs. Treatment dogs had lower Hp concentrations (P ≤ 0.05) than Ctl. There were no differences between treatments for SAA and MDA concentrations (P > 0.05). Fecal arabinose concentrations were greater in treatment (Trt) dogs (P ≤ 0.05) compared to Ctl, though no other fecal metabolites were affected by treatment. There was no difference in the relative frequency of defecations scored at any fecal score between Trt and Ctl dogs, and mean score did not differ between groups (P > 0.10). These data suggest that concentrated brewer's yeast may have the potential to reduce gut permeability without impacting inflammatory status and markers of health in adult dogs.


This study evaluated the effects of concentrated brewer's yeast on gut health in dogs. Nineteen Siberian Huskies and one Alaskan husky were blocked and randomly allocated to one of two groups. Treatment dogs received a yeast supplement for 10 wk, while control dogs received no supplement. Dogs were administered two markers to assess intestinal permeability prior to start of treatment and following 10 wk of treatment. Blood samples were collected and analyzed for markers of inflammatory status (serum amyloid A [SAA] and Haptoglobin [Hp]) and oxidative status (serum malondialdehyde [MDA]). Fecal samples were collected weekly to assess fecal score as well as fecal metabolite concentrations. Intestinal permeability was reduced in treatment dogs following treatment, and no change was observed in the control group. Treatment dogs had lower Hp concentrations than control (Ctl), but there were no differences between treatments for SAA and MDA. Fecal arabinose concentrations were significantly greater in the treatment group when compared to control. There were no differences in the relative frequency of defecations scored at any fecal score between treatment and Ctl dogs, nor did mean score differ between the groups. This study suggests that concentrated brewer's yeast may reduce gut permeability and inflammation without detrimentally impacting markers of health in adult dogs.


Asunto(s)
Enfermedades de los Perros , Saccharomyces cerevisiae , Masculino , Femenino , Perros , Animales , Alimentación Animal/análisis , Yohexol , Ácido Edético , Dieta/veterinaria , Inflamación/veterinaria , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...