Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(19): e202219009, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36807956

RESUMEN

Liquid GaPt catalysts with Pt concentrations as low as 1×10-4  atomic % have recently been identified as highly active for the oxidation of methanol and pyrogallol under mild reaction conditions. However, almost nothing is known about how liquid state catalysts support these significant improvements in activity. Here, ab initio molecular dynamics simulations are employed to examine GaPt catalysts in isolation and interacting with adsorbates. We find that persistent geometric features can exist in the liquid state, given the correct environment. We postulate that the Pt dopant may not be limited to direct involvement in catalysis of reactions, but rather that its presence can also enable Ga atoms to become catalytically active.

2.
Phys Chem Chem Phys ; 25(2): 1236-1247, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36525244

RESUMEN

The melting behaviour of surface slabs of Ga-In and Ga-Sn is studied using periodic density functional theory and ab initio molecular dynamics. Analysis of the structure and electronics of the solid and liquid phases gives insight into the properties of these alloys, and why they may act as promising CO2 reduction catalysts. We report melting points for slabs of hexa-layer Ga-In (386 K) and Ga-Sn (349 K) that are substantially lower than the pure hexa-layer Ga system (433 K), and attribute the difference to the degree to which the dopant (In or Sn) disrupts the layered Ga network. In molecular dynamics trajectories of the liquid structures, we find that dopant tends to migrate from the centre of the slab towards the surface and accumulate there. Bader charge calculations reveal that the surface dopant atoms have increased positive charge, and density of states analyses suggest the liquid alloys maintain metallic electronic behaviour. Thus, surface In and Sn may provide good binding sites for intermediates in CO2 reduction. This work contributes to our understanding of the properties of liquid metal systems, and provides a foundation for modelling catalysis on these materials.

3.
Science ; 378(6624): 1118-1124, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480610

RESUMEN

In nature, snowflake ice crystals arrange themselves into diverse symmetrical six-sided structures. We show an analogy of this when zinc (Zn) dissolves and crystallizes in liquid gallium (Ga). The low-melting-temperature Ga is used as a "metallic solvent" to synthesize a range of flake-like Zn crystals. We extract these metallic crystals from the liquid metal solvent by reducing its surface tension using a combination of electrocapillary modulation and vacuum filtration. The liquid metal-grown crystals feature high morphological diversity and persistent symmetry. The concept is expanded to other single and binary metal solutes and Ga-based solvents, with the growth mechanisms elucidated through ab initio simulation of interfacial stability. This strategy offers general routes for creating highly crystalline, shape-controlled metallic or multimetallic fine structures from liquid metal solvents.

4.
Chem Commun (Camb) ; 58(99): 13771-13774, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36426656

RESUMEN

Liquid GaAu systems provide the possibility of developing dynamic and self-healing materials for a variety of applications, including catalysis. GaAu systems provide both dynamic capability by being liquid at just above room temperature, as a result of the Ga, and likely catalytic activity, resulting from the Au. While the formation of a Ga2Au intermetallic is known, the behaviours that result from lower Au concentrations within a liquid Ga solvent are hitherto unknown. Here, ab initio molecular dynamics are used to understand how different low concentrations of Au operate within a liquid Ga solvent. We determine that Au concentrations of between 15% Au wt and 25% Au wt will give rise to the highest abundance of stabilised single Au atoms.


Asunto(s)
Aleaciones , Oro , Catálisis , Simulación de Dinámica Molecular
5.
Chemphyschem ; 23(8): e202200024, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35224844

RESUMEN

Catalysts are required to ensure electrochemical reduction of CO2 to fuels proceeds at industrially acceptable rates and yields. As such, highly active and selective catalysts must be developed. Herein, a density functional theory study of p-block element and noble metal doped graphene-based single-atom catalysts in two defect sites for the electrochemical reduction of CO2 to CO and HCOOH is systematically undertaken. It is found that on all of the systems considered, the thermodynamic product is HCOOH. Pb/C3 , Pb/N4 and Sn/C3 are identified as having the lowest overpotential for HCOOH production while Al/C3 , Al/N4 , Au/C3 and Ga/C3 are identified as having the potential to form higher order products due to the strength of binding of adsorbed HCOOH.

6.
Phys Chem Chem Phys ; 24(1): 98-111, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34889923

RESUMEN

Single-atom catalysts are promising candidates for many industrial reactions. However, making true single-atom catalysts is an experimental dilemma, due to the difficulty of keeping dopant single atoms stable at temperature and under pressure. This difficulty can lead to clustering of the metal dopant atoms in defect sites. However, the electronic and geometric structure of sub-nanoscale clusters in single-atom defects has not yet been explored. Furthermore, recent studies have proven sub-nanoscale clusters of dopants in single-atom defect sites can be equally good or better catalysts than their single-atom counterparts. Here, a comprehensive DFT study is undertaken to determine the geometric and electronic structure effects that influence clustering of noble and p-block dopants in C3- and N4-defect sites in graphene-based systems. We find that the defect site is the primary driver in determining clustering dynamics in these systems.

7.
Phys Chem Chem Phys ; 23(26): 14383-14390, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34180476

RESUMEN

Experiment has shown that dilute GaBi systems produce a range of self-organised nanostructured patterns at the surface [Tang et al., Nat. Nanotechnol., 2021, 16, 431-439]. Using extensive ab initio molecular dynamics simulations, we elucidate the mechanisms underlying the formation of the Bi surface islands in Bi-doped Ga liquid metals. Here, we show that in order for internal Bi atoms to diffuse to the surface a lateral extension of the Ga surface network is required. Furthermore, the absence of surface Bi patterning perturbs the Ga surface network providing a preferred path for an internal Bi to diffuse. By understanding how and why Bi nucleates at a surface, we increase the ability to control, manipulate and design such systems for use in future electronic devices.

8.
Nat Nanotechnol ; 16(4): 431-439, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33462429

RESUMEN

It is well-understood that during the liquid-to-solid phase transition of alloys, elements segregate in the bulk phase with the formation of microstructures. In contrast, we show here that in a Bi-Ga alloy system, highly ordered nanopatterns emerge preferentially at the alloy surfaces during solidification. We observed a variety of transition, hybrid and crystal-defect-like patterns, in addition to lamellar and rod-like structures. Combining experiments and molecular dynamics simulations, we investigated the influence of the superficial Bi and Ga2O3 layers during surface solidification and elucidated the pattern-formation mechanisms, which involve surface-catalysed heterogeneous nucleation. We further demonstrated the dynamic nature and robustness of the phenomenon under different solidification conditions and for various alloy systems. The surface patterns we observed enable high-spatial-resolution nanoscale-infrared and surface-enhanced Raman mapping, which reveal promising potential for surface- and nanoscale-based applications.

9.
Nanoscale Adv ; 3(2): 499-507, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36131742

RESUMEN

Using ab initio molecular dynamics, we show that a recently discovered form of 2D Ga-gallenene-exhibits highly variable thickness dependent properties. Here, 2D Ga of four, five and six atomic layers thick are found to be thermally stable to 457 K, 350 K and 433 K, respectively; all well above that of bulk Ga. Analysis of the liquid structure of 2D Ga shows a thickness dependent ordering both parallel and perpendicular to the Ga/vacuum interface. Furthermore, ground state optimisations of 2D Ga to 12 atomic layers thick shows a return to a bulk-like bonding structure at 10 atoms thick, therefore we anticipate that up to this thickness 2D Ga structures will each exhibit novel properties as discrete 2D materials. Gallenene has exciting potential applications in plasmonics, sensors and electrical contacts however, for the potential of 2D Ga to be fully realised an in depth understanding of its thickness dependent properties is required.

10.
Nanoscale Adv ; 1(6): 2416-2425, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131985

RESUMEN

The atomic structure of size-selected Pt clusters in the range 10-600 atoms is investigated with aberration-corrected scanning transmission electron microscopy and reveals significantly different behaviour from the existing data for Au clusters. The Pt clusters show a dominance of the FCC motif from relatively small sizes, whereas traditionally for Au multiple motifs - the icosahedron, decahedron and FCC motifs (and related structures) compete. The new data motivates a comprehensive computational investigation to better understand similarities and differences in the structures and energetics of the two different metallic clusters. Low energy structures of Pt and Au clusters with 55, 101, 147, 228 and 309 atoms (±2%) are identified using a global optimisation algorithm, and the relative energies found by local minimisation using density functional theory. Our computational results support the experimental observations; for Au clusters all motifs are comparably stable over the whole size range, whereas for Pt, the motifs only compete at the smallest sizes, after which the FCC motif is the most stable. Structural analysis suggests the greater tendency of Au towards amorphisation enables the icosahedron and decahedron to remain competitive at larger sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...