Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 12(27): 6269-6276, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34197122

RESUMEN

Photocathodes emit electrons when illuminated, a process utilized across many technologies. Cutting-edge applications require a set of operating conditions that are not met with current photocathode materials. Meanwhile, halide perovskites have been studied extensively and have shown a lot of promise for a wide variety of optoelectronic applications. Well-documented halide perovskite properties such as inexpensive growth techniques, improved carrier mobility, low trap density, and tunable direct band gaps make them promising candidates for next-generation photocathode materials. Here, we use density functional theory to explore the possible application of pure inorganic perovskites (CsPbBr3 and CsPbI3) as photocathodes. It is determined that the addition of a Cs coating improved the performance by lowering the work function anywhere between 1.5 and 3 eV depending on the material, crystal surface, and surface coverage. A phenomenological model, modified from that developed by Gyftopoulos and Levine, is used to predict the reduction in work function with Cs coverage. The results of this work aim to guide the further experimental development of Cs-coated halide perovskites for photocathode materials.

2.
Nature ; 553(7687): 189-193, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323292

RESUMEN

Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

3.
Appl Spectrosc ; 66(10): 1242-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23031709

RESUMEN

We present calculations of absorption spectra arising from molecular vibrations at THz frequencies for molecular clusters of the explosive HMX using density functional theory (DFT). The features of these spectra can be shown to follow from the coupling of vibrational modes. In particular, the coupling among ground-state vibrational modes provides a reasonable molecular-level interpretation of spectral features associated with the vibrational modes of molecular clusters. THz excitation from the ground state is associated with frequencies that characteristically perturb molecular electronic states, in contrast to frequencies, which are usually substantially above the mid-infrared (mid-IR) range, that can induce appreciable electronic-state transition. Owing to this characteristic of THz excitation, one is able to make a direct association between local oscillations about ground-state minima of molecules, either isolated or comprising a cluster, and THz absorption spectra. The DFT software program GAUSSIAN was used for the calculations of the absorption spectra presented here.

4.
Appl Spectrosc ; 65(4): 409-16, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21396188

RESUMEN

We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive ß-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA