Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 37824-37834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38787473

RESUMEN

This theoretical investigation delves into the analysis of Reactive red 2 (RR-2) adsorption isotherms on metal hydroxide employing a sophisticated double-layer model characterized by dual-energy levels within the realm of physical adsorption phenomena. An examination of five distinct statistical physics frameworks was undertaken to elucidate the modeling and interpretation of equilibrium data. Expression for the physico-chemical parameters involved in the adsorption phenomena was derived based on statistical physics treatment. Fitting experimental adsorption isotherms (308-333 K) to a DAMTBS has revealed the number of anchored molecules per site, occupied receptor site density, and the number of adsorbed layers. The steric parameter n varies between 0.92 and 1.05. More importantly, it is evidenced that the adhesion mechanism of (RR-2) onto metal hydroxide as determined by the estimated adsorption energies (< 40 kJ/mol) supports a spontaneous and exothermic physisorption process. Thermodynamic potential functions such as entropy, Gibbs free energy, and internal energy have been computed based on the most suitable model. This research advances our physical understanding of how metal hydroxide captures dye molecules RR-2 through adsorption reaction for water depollution treatment.


Asunto(s)
Hidróxidos , Aguas del Alcantarillado , Adsorción , Hidróxidos/química , Aguas del Alcantarillado/química , Termodinámica , Naftalenosulfonatos/química
2.
Environ Sci Pollut Res Int ; 31(27): 39208-39216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38814558

RESUMEN

This study presents a theoretical analysis of the adsorption process of pharmaceutical pollutants, specifically acetaminophen (ATP) and diclofenac (DFC), onto activated carbon (AC) derived from avocado biomass waste. The adsorption isotherms of ATP and DFC were analyzed using a multilayer model, which revealed the formation of two to four adsorption layers depending on the temperature of the aqueous solution. The saturation adsorption capacities for ATP and DFC were 52.71 and 116.53 mg/g, respectively. A steric analysis suggested that the adsorption mechanisms of ATP and DFC involved a multi-molecular process. The calculated adsorption energies (ΔE1 and ΔE2) varied between 12.86 and 22.58 kJ/mol, with the highest values observed for DFC removal. Therefore, the adsorption of these organic molecules was associated with physisorption interactions: van der Waals forces and hydrogen bonds. These findings enhance the understanding of the depollution processes of pharmaceutical compounds using carbon-based adsorbents and highlight the potential of utilizing waste biomass for environmental remediation.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Diclofenaco/química , Preparaciones Farmacéuticas/química , Carbono/química , Acetaminofén/química
3.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526713

RESUMEN

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Asunto(s)
Ácido Acético , Compuestos de Amonio , Contaminantes Químicos del Agua , Adsorción , Ácido Acético/química , Compuestos de Amonio/química , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno , Arecaceae/química , Carbón Orgánico/química , Purificación del Agua/métodos
4.
Int J Biol Macromol ; 242(Pt 4): 125156, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270136

RESUMEN

The increased use of antibiotics worldwide turned into a serious preoccupation due to their environmental and health impacts. Since the majority of antibiotic residuals are hardly eliminated from wastewater, based on usual methods, other treatments receive considerable attention. Adsorption is known as the most effective method of the treatment of antibiotics. In this paper, the adsorption isotherms of doripenem, ampicillin, and amoxicillin on bentonite-chitosan composite are determined at three temperatures, T = 303.15, 313.15 and 323.15 K, which are used to achieve a theoretical investigation of the removal phenomenon, based on a statistical physics theory. Three analytical models are utilized to describe the AMO, AMP, and DOR adsorption phenomena at the molecular level. From the fitting results, all antibiotic adsorption on a BC adsorbent is associated with the monolayer formation with one type of site. Concerning the number of adsorbed molecules per site (n), it is concluded that multi-docking (n < 1) and multi-molecular (n > 1) phenomena are feasible for AMO, AMP, and DOR adsorption on BC. The adsorption amounts at saturation of the BC adsorbent, deduced by the monolayer model, are found to be 70.4-88.0 mg/g for doripenem, 57.8-79.2 mg/g for ampicillin and 38.6-67.5 mg/g for amoxicillin indicating that the antibiotics adsorption performance of BC was greatly depended on temperature where the adsorption capacities increased with the increment of this operating variable. All adsorption systems are demonstrated by a calculation of the energy of adsorption, considering that the extrication of these pollutants implies physical interactions. The thermodynamic interpretation confirms the spontaneous and feasible nature of the adsorption of the three antibiotics on BC adsorbent. In brief, BC sample is regarded as a promising adsorbent to extract antibiotics from water and presents important potentials to be effected in wastewater handling at industrial level.


Asunto(s)
Antibacterianos , Quitosano , Bentonita , Aguas Residuales , Adsorción , Doripenem , Amoxicilina , Ampicilina
5.
Environ Sci Pollut Res Int ; 30(6): 15789-15796, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36173520

RESUMEN

An activated carbon (AC) deriving from sludge is used in this research for the adsorption of two water pollutants, namely Reactive Black 5 (RB5) and Green Alizarin (GA) dyes, at different temperatures. The adsorption capacities varied from 277.2 to 312.69 mg/g for GA and from 225.82 to 256.02 mg/g for RB5. Comparatively, this adsorbent presents good performances in removing these dyes from wastewater. The application of physical models to adsorption experiments is advantageous to provide new insights into the dyes' adsorption mechanism. A dedicated physical adsorption model suggests that RB5 and GA dyes are adsorbed in a monolayer. Moreover, the orientation of RB5 and GA dyes on AC resulted in an angled position, determining a multi-molecular process. In addition, both dyes are adsorbed by the occurrence of an aggregation process, forming a dimer. The impact of temperature can be also interpreted, allowing concluding that it plays a relevant role in removing these dyes. The calculation and interpretation of adsorption energies show that the dyes are removed via an endothermic process, and physical forces are involved.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Carbón Orgánico , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
6.
Environ Sci Pollut Res Int ; 29(42): 63622-63628, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35460487

RESUMEN

This work describes the modeling and analysis of methylene blue molecule on different adsorbents, namely, nickel alginate/graphene oxide (NA/GO) aerogel, nickel alginate/activated carbon (NA/AC) aerogel, and Trichosanthes kirilowii maxim shell activated carbon (TKAC). A multilayer statistical physics model was used to calculate the energetic and steric parameters of the adsorption of methylene blue on these adsorbents. Based on the modeling investigation, it was concluded that the formation of multiple dye adsorbed layers on these adsorbents could be feasible where physical adsorption interactions could be involved. Adsorption capacities at saturation of these adsorbents ranged from 542.97 to 470.03 mg/g, 790.66 to 684.47 mg/g, and 401.11 to 1236.24 mg/g for NA-GO aerogel, NA-AC aerogel, and TKAC, respectively. This research contributes with new findings for the understanding of dye adsorption on novel materials, which can be used in water pollution control.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Adsorción , Alginatos , Carbón Orgánico , Grafito , Azul de Metileno , Níquel , Textiles
7.
Environ Sci Pollut Res Int ; 29(41): 62507-62513, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35404034

RESUMEN

The work reports a modeling analysis of single-compound and binary adsorption of Pb2+ and Cd2+ ions from polluted water onto the activated carbon at room temperature. The homogeneous model for single adsorption (HM) and the exclusive extended monolayer model for binary adsorption (EEMM) are applied for the interpretation of the experimental data set. The adopted models correlate the entire set of adsorption data, allowing a thorough description of the occurring phenomena. The overall objective of the study is to determine the adsorption mechanisms, also through a comparative analysis between the single-compound and binary modeling data. The parameters of both models are used for to retrieve useful indications about the adsorption of these two ions. In particular, the number of ions adsorbed per single functional groups changed from single-compound to binary adsorption, allowing to explain the competitive behavior of the investigated system. The adsorption energy values vary between 21.39 (Pb2+) and 24.06 kJ/mol (Cd2+), and 27.17 (Pb2+) and 32.59 kJ/mol (Cd2+) in single-compound and binary systems, respectively, indicating that adsorption is a physisorption process.

8.
Environ Sci Pollut Res Int ; 29(20): 30184-30192, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997519

RESUMEN

The paper describes a theoretical analysis of the adsorption of nicotinamide and propranolol onto a magnetic-activated carbon (MAC). For a better evaluation of the adsorption mechanism, adsorption isotherms expressing the variation of the adsorption capacity as function of adsorbate concentration were determined at different temperatures ranging from 20 to 45 °C. For both the analytes, experimental tests reveal that adsorption capacity increases with temperature. An advanced multi-layer model derived from the statistical physics is set for the interpretation of the entire adsorption data set. The modelling results show that the propranolol molecules change their adsorption orientation from a mixed (parallel and non-parallel) orientation to a multimolecular process. For nicotinamide, the aggregation of molecules is practically absent, except for the data at lower temperatures. The model allows stating that the adsorption of both the pharmaceutical compounds occurs via the formation of one or two layers on MAC adsorbent, the propranolol showing a higher tendency to form multiple layers. Finally, adsorption energy is estimated suggesting that the adsorption is endothermic and physical interactions are the responsible of the adsorption of both the compounds onto MAC adsorbent.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Cinética , Fenómenos Magnéticos , Niacinamida , Propranolol , Termodinámica , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Pollut Res Int ; 28(24): 30943-30954, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33590399

RESUMEN

A theoretical physicochemical and thermodynamic investigation of the adsorption of heavy metals Zn2+, Cd2+, Ni2+, and Cu2+on carbon-based adsorbents was performed with statistical physics fundaments. Particularly, the experimental adsorption isotherms of heavy metal removal, at 30°C and pH 5, using adsorbents obtained from the pyrolysis of three biomasses (cauliflower cores, broccoli stalks, and coconut shell) were modelled and interpreted with a homogeneous statistical physics adsorption model. Calculations indicated that the heavy metal adsorption with these carbon-based materials was a multi-ionic process where several ions interact simultaneously with the same carboxylic functional group on the adsorbent surface. Adsorption capacities for these metal ions and adsorbents were correlated with electronegativity theory, which established that the adsorbate with the highest electronegativity was more readily adsorbed by the carboxylic functional groups available on the adsorbent surfaces. Also, the chemical compositions of biomass precursors explained achieved adsorption capacities for these metallic ions. The best adsorbent for heavy metal removal was obtained from CC biomass pyrolysis. Calculated adsorption energies for heavy metal removal could be associated with physisorption-type forces. Finally, the adsorption mechanism analysis was complemented with the determination of adsorption thermodynamic functions using the statistical physics.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio , Carbono , Concentración de Iones de Hidrógeno , Iones , Cinética , Zinc
10.
Environ Sci Pollut Res Int ; 28(24): 30714-30721, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33594555

RESUMEN

The paper describes a theoretical analysis of the adsorption of amoxicillin (AMX) onto two activated carbons pyrolysed at either 600 or 700 °C (PAC-600 and PAC-700). Series of experimental data are carried out at different temperatures ranging from 10 to 45 °C, as this is the first key factor to explain the adsorption mechanism of this pollutant. AMX adsorption capacity varied from 275 to 450 mg/g and between 276 and 454 mg/g for PAC-600 and PAC-700, respectively. It can be deduced that the pyrolysis temperature does not play a crucial role in AMX removal capacity of the adsorbents. A comparison with literature data shows that the retrieved adsorption capacities of both the adsorbents are very competitive for an effective water treatment. Physical models are applied to the two experimental data sets showing that a monolayer model with single energy is the best option to explain the AMX adsorption mechanism on both PAC-600 and PAC-700 adsorbents. The interpretation of the theoretical results points out that the AMX was not aggregated during the adsorption process. Under these experimental working conditions, it is noted that AMX is adsorbed almost via a parallel orientation on PAC-600 and PAC-700 adsorbents, reflecting that the adsorption is a multi-interaction mechanism. The model provides an estimation of the adsorption energy that allows the quantification of the interactions between the AMX and both PAC-600 and PAC-700 adsorbent surfaces; in both the cases, physical bindings are involved in AMX adsorption.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Amoxicilina , Carbón Orgánico , Cinética , Contaminantes Químicos del Agua/análisis
11.
Int J Biol Macromol ; 158: 595-604, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387603

RESUMEN

The simultaneous adsorption of three pollutants cobalt (Co), methylene blue (MB) and nickel (Ni) on a modified chitin surface from ternary systems was investigated. Multicomponent experimental adsorption data were determined at 298-328 K and pH 6. These experimental studies indicated that Ni adsorption was higher than those obtained for Co and MB. The multicomponent adsorption mechanism of this ternary system was analyzed with statistical physics theory where a set of new models with different hypotheses was developed and tested. Results showed that an adsorption model assuming that the pollutants Co, MB and Ni were adsorbed on three different types of modified chitin receptor sites was the most appropriate. This model was also utilized to calculate the corresponding adsorption energies to describe the possible interactions between these adsorbates and the surface of modified chitin. A general analysis of trends and magnitude of the model parameters provided a deeper understanding of the ternary adsorption mechanism at molecular level. Macroscopically, the ternary adsorption mechanism was interpreted via a calculation of three thermodynamic functions.

12.
Environ Sci Pollut Res Int ; 24(24): 19902-19908, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28687997

RESUMEN

In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn2+) = 2.12 > n (Cd2+) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn2+ than for Cd2+. Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.


Asunto(s)
Cadmio/química , Carbono/química , Zinc/química , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Iones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...