Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722021

RESUMEN

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.


Asunto(s)
Hipocampo , Factores de Transcripción NFI , Células-Madre Neurales , Proteínas Asociadas a Matriz Nuclear , ARN Mensajero , Animales , Ratones , Diferenciación Celular , Hipocampo/metabolismo , Hipocampo/citología , Células-Madre Neurales/metabolismo , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Oligodendroglía/metabolismo , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Front Neurosci ; 17: 1179011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457009

RESUMEN

Neurogenesis ceases in most regions of the mammalian brain before or shortly after birth, however, in a few restricted brain regions, the production of new neurons proceeds into adulthood. Neural stem cells (NSCs) in these neurogenic zones are integrated into niches that control their activity and fate. Most stem cells in the adult brain are mitotically inactive and these cells can remain quiescent for months or even years. One of the key questions is what are the molecular mechanisms that regulate NSC maintenance and differentiation. Notch signaling has been shown to be a critical regulator of stem cell activity and maintenance in many tissues including in the nervous system. In this mini-review we discuss the roles of Notch signaling and the functions of the different Notch receptors and ligands in regulating neurogenesis in the adult murine brain. We review the functions of Notch signaling components in controlling NSC quiescence and entry into cell cycle and neurogenesis.

4.
Cell Rep ; 20(2): 411-426, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700942

RESUMEN

Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Glioblastoma/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Lámina Nuclear/metabolismo
5.
Cell Death Differ ; 24(6): 1045-1062, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28475179

RESUMEN

The intracellular autophagic degradative pathway can have a tumour suppressive or tumour-promoting role depending on the stage of tumour development. Upon starvation or targeting of oncogenic receptor tyrosine kinases (RTKs), autophagy is activated owing to the inhibition of PI3K/AKT/mTORC1 signalling pathway and promotes survival, suggesting that autophagy is a relevant therapeutic target in these settings. However, the role of autophagy in cancer cells where the PI3K/AKT/mTORC1 pathway is constitutively active remains partially understood. Here we report a role for mTORC1-independent basal autophagy in regulation of RTK activation and cell migration in colorectal cancer (CRC) cells. PI3K and RAS-mutant CRC cells display basal autophagy levels despite constitutive mTORC1 signalling, but fail to increase autophagic flux upon RTK inhibition. Inhibition of basal autophagy via knockdown of ATG7 or ATG5 leads to decreased phosphorylation of several RTKs, in particular c-MET. Internalised c-MET colocalised with LAMP1-negative, LC3-positive vesicles. Finally, autophagy regulates c-MET phosphorylation via an mTORC2-dependent mechanism. Overall, our findings reveal a previously unappreciated role of autophagy and mTORC2 in regulation of oncogenic RTK activation, with implications for understanding of cancer cell signalling.


Asunto(s)
Autofagia , Neoplasias Colorrectales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/fisiopatología , Humanos , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA