Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(51): e202314659, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37934031

RESUMEN

We here report the organocatalytic and temperature-controlled depolymerization of biobased poly(limonene carbonate) providing access to its trans-configured cyclic carbonate as the major product. The base TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) offers a unique opportunity to break down polycarbonates via end-group activation or main chain scission pathways as supported by various controls and computational analysis. These energetically competitive processes represent an unprecedented divergent approach to polycarbonate recycling. The trans limonene carbonate can be converted back to its polycarbonate via ring-opening polymerization using the same organocatalyst in the presence of an alcohol initiator, offering thus a potential circular and practical route for polycarbonate recycling.

2.
ACS Sustain Chem Eng ; 11(12): 4885-4893, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37869721

RESUMEN

A commercially available Lipase B from Candida antarctica immobilized onto a macroporous support (Novozym 435) has been employed in the presence of H2O2 as a benign oxidant for the epoxidation of various biorenewable terpenes. This epoxidation protocol was explored under both heterogeneous batch and continuous flow conditions. The catalyst recyclability was also investigated demonstrating good activity throughout 10 cycles under batch conditions, while the same catalyst system could also be productively used under continuous flow operation for more than 30 h. This practical and relatively safe sustainable flow epoxidation of di- and trisubstituted alkenes by H2O2 allows for the production of gram quantities of a range of terpene epoxides. As a proof of principle, the same protocol can also be applied to the epoxidation of biobased polymers as a means to post-functionalize these macromolecules and equip them with cross-linkable epoxy groups.

3.
Chempluschem ; 87(8): e202200038, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35471596

RESUMEN

In this work, four new mononuclear Cr(III) complexes (2-5) bearing bis-thioether-diphenolate, [OSSO]-type ligands, were synthesized and characterized. These complexes in combination with bis(triphenylphosphine)iminium chloride (PPNCl) promoted the coupling of CO2 with epoxides. Depending on the type of substrate and the conditions, the reaction results in the selective formation of either polycarbonate or cyclic carbonate. For example, the reactions in the presence of complex 2 led to the exclusive formation of poly(cyclohexene carbonate, PCHC) from cyclohexene oxide (CHO) (TOF up to 39 h-1 , at T=45-100 °C, time=24 h, pCO2 =20 bar, epoxide/2 (mol/mol)=1000, and PPNCl/2=0.5-2.0 mol %). Under the same conditions and PPNCl/2=0.5-5.0 mol %, the reactions of CO2 with styrene oxide (SO), epichlorohydrin (ECH), 1,2 epoxydodecane (EDD), and allyl glycidyl ether (AGE) have shown selective conversion to the corresponding cyclic carbonates (TOF up to 41 h-1 ).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...