Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(3): 112263, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36930644

RESUMEN

Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.


Asunto(s)
Petromyzon , Animales , Petromyzon/genética , Cromosomas/genética , ADN/genética , Genoma , Vertebrados/genética , Células Germinativas , Evolución Molecular , Filogenia
2.
Dev Biol ; 429(1): 31-34, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28669817

RESUMEN

In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma.


Asunto(s)
Reordenamiento Génico/genética , Genoma , Lampreas/genética , Filogenia , Animales , ADN/metabolismo , Células Germinativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...