Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38578377

RESUMEN

Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.

2.
Int J Pharm ; 655: 124077, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38569975

RESUMEN

Developing drug delivery systems (DDSs) is one of the approaches used to improve cancer treatment, with the main goal of loading cancer drugs into a carrier targeting a specific organ and avoiding the distribution to healthy tissues. Nanoparticles (NPs) have been shown to be one of the optimum carriers that can be used as DDSs. Lipid-based NPs, such as liposomes, have been investigated in the current study due to their low toxicity and ability to carry hydrophilic and hydrophobic molecules. In the current studies, conventional liposomes composed of DPPC, and cholesterol and PEGylated liposomes composed of DPPC, cholesterol, and DSPE-PEG2000 are manufactured and loaded with Carboplatin. The study focused on investigating and comparing the impact of modifying the carboplatin-loaded liposomes with different concentrations of DSPE-PEG2000 on the NP diameter, polydispersity, ζ-potential, encapsulation efficiency (EE%), and drug release. The hydrodynamic microfluidic system was used to investigate any possible improvement in the EE% over other conventional methods. The results showed the microfluidic system's promising effect in enhancing the EE% of the Carboplatin. Moreover, the results showed a smaller diameter and higher stability of the PEGylated liposome. However, conventional liposomes represent better homogeneity and higher encapsulation efficiency for hydrophilic molecules.


Asunto(s)
Liposomas , Microfluídica , Fosfatidiletanolaminas , Liposomas/química , Carboplatino , Polietilenglicoles/química , Colesterol/química
3.
Expert Opin Drug Deliv ; : 1-13, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555481

RESUMEN

BACKGROUND: Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery. RESEARCH DESIGN AND METHODS: Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week. RESULTS: Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC. CONCLUSIONS: The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38472727

RESUMEN

The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 µm in height and 500 µm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.

5.
Int J Pharm ; 653: 123902, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38360287

RESUMEN

Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.


Asunto(s)
Medicina de Precisión , Impresión Tridimensional , Medicina de Precisión/métodos , Industrias , Control de Calidad , Preparaciones Farmacéuticas , Tecnología Farmacéutica/métodos , Formas de Dosificación
6.
Biomater Adv ; 158: 213765, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242058

RESUMEN

Diabetic complications present throughout a wide range of body tissues, however one of the most widely recognised complications remains to be chronic diabetic wounds. Current treatment options largely rely on standard wound treatment routines which provide no promotion of wound healing mechanisms at different physiological stages of repair. Recently materials produced using novel additive manufacturing techniques have been receiving attention for applications in wound care and tissue repair. Additive manufacturing techniques have recently been used in the interest of targeted drug delivery and production of novel materials resembling characteristics of native tissues. The potential to exploit these highly tailorable manufacturing techniques for the design of novel wound care remedies is highly desirable. In the present study two additive manufacturing techniques are combined to produce a scaffold for the treatment of diabetic wounds. The combination of microfluidic manufacturing of an antimicrobial liposome (LP) formulation and a coaxial electrospinning method incorporating both antimicrobial and proangiogenic factors allowed dual delivery of therapeutics to target both infection and lack of vascularisation at wound sites. The coaxial fibres comprised of a polyvinyl alcohol (PVA) core containing vascular endothelial growth factor (VEGF) and a poly (l-lactide-co-ε-caprolactone) (PLCL) shell blended with amoxicillin (Amox). Additionally, a liposomal formulation was produced to incorporate Amox and adhered to the surface of fibres loaded with Amox and VEGF. The liposomal loading provided the potential to deliver a much higher, more clinically relevant dose of Amox without detrimentally changing the mechanical properties of the material. The growth factor release was sustained up to 7-days in vitro. The therapeutic effect of the antibiotic loading was analysed using a disk diffusion method with a significant increase in zone diameter following LP adhesion, proving the full scaffold system had improved efficacy against both Gram-positive and Gram-negative strains. Additionally, the dual-loaded scaffolds show enhanced potential for supporting vascular growth in vitro, as demonstrated via a viability assay and tubule formation studies. Results showed a significant increase in the average total number of tubes from 10 in control samples to 77 in samples fully-loaded with Amox and VEGF.


Asunto(s)
Antiinfecciosos , Diabetes Mellitus , Humanos , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Liposomas
7.
Drug Deliv Transl Res ; 14(1): 177-190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37454029

RESUMEN

Vat photopolymerisation (VP) three-dimensional printing (3DP) has attracted great attention in many different fields, such as electronics, pharmaceuticals, biomedical devices and tissue engineering. Due to the low availability of biocompatible photocurable resins, its application in the healthcare sector is still limited. In this work, we formulate photocurable resins based on urethane dimethacrylate (UDMA) combined with three different difunctional methacrylic diluents named ethylene glycol dimethacrylate (EGDMA), di(ethylene glycol) dimethacrylate (DEGDMA) or tri(ethylene glycol) dimethacrylate (TEGDMA). The resins were tested for viscosity, thermal behaviour and printability. After printing, the 3D printed specimens were measured with a digital calliper in order to investigate their accuracy to the digital model and tested with FT-IR, TGA and DSC. Their mechanical properties, contact angle, water sorption and biocompatibility were also evaluated. The photopolymerizable formulations investigated in this work achieved promising properties so as to be suitable for tissue engineering and other biomedical applications.


Asunto(s)
Resinas Compuestas , Estereolitografía , Resinas Compuestas/química , Espectroscopía Infrarroja por Transformada de Fourier , Impresión Tridimensional
8.
Drug Deliv Transl Res ; 14(1): 266-279, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37505373

RESUMEN

The production of solid lipid nanoparticles (SLNs) is challenging, especially when considering the incorporation of biologics. A novel in-house method of microfluidic production of biologic-encapsulated SLNs is proposed, using a variety of base materials for formulation to help overcome the barriers presented during manufacture and administration. Trypsin is used as a model drug for hydrophilic encapsulation whilst testosterone is employed as a positive non-biologic lipophilic control active pharmaceutical ingredient. Particle sizes obtained ranged from 160 to 320 nm, and a lead formulation has been identified from the combinations assayed, allowing for high encapsulation efficiencies (47-90%, respectively) of both the large hydrophilic and the small hydrophobic active pharmaceutical ingredients (APIs). Drug release profiles were analysed in vitro to provide useful insight into sustained kinetics, providing data towards future in vivo studies, which displayed a slow prolonged release for testosterone and a quicker burst release for trypsin. The study represents a large leap forward in the field of SLN production, especially in the field of difficult-to-encapsulate molecules, and the technique also benefits from being more environmentally sustainable due to the use of microfluidics.


Asunto(s)
Microfluídica , Nanopartículas , Lípidos/química , Tripsina , Nanopartículas/química , Esteroides , Testosterona , Tamaño de la Partícula , Portadores de Fármacos/química
9.
Int J Pharm ; 650: 123710, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38097147

RESUMEN

With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.


Asunto(s)
Amoxicilina , Microfluídica , Liposomas , Antibacterianos , Polietilenglicoles
10.
Expert Opin Drug Deliv ; : 1-19, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38078427

RESUMEN

INTRODUCTION: 3D printing (3DP) applications in medicine are intensively investigated, creating an opportunity to provide patient-tailored therapy by delivering a drug with an accurate dose and release profile. Moving away from the 'one size fits all' paradigm, it could be beneficial for treating mental and neurological disorders, improving the efficiency and safety of the therapy. The aim of this critical review is to assess recent advances and identify gaps regarding 3DP in this important and challenging field, by focusing on recent research examples. AREAS COVERED: Applications of the 3DP techniques for solid dosage forms in mental and neurological disorders have been covered and discussed, together with recent advantages, limitations, and future directions. EXPERT OPINION: The personalize treatment, which is considered as the most significant advantage of the 3DP technique, can be beneficial in mental and neurological disorders therapy, where the dose should be adjusted to the patient. Printing of medicines enables creating the structure modifications and thus controlling the drug release or combining multiple drugs into one tablet, simplifying the dose regimen. Medications printed on-demand, in health-care facilities, could address the special needs of pediatric patients and help avoid interruptions in the supply chain. Despite promising advances, the described methods have limitations and need further investigation before being scaled-up to an industrial manufacturing environment. There is also a need to establish protocols for the preparation and registration of 3DP dosage forms.

11.
Mol Pharm ; 20(12): 6184-6196, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37931072

RESUMEN

For cancer therapy, paclitaxel (PX) possesses several limitations, including limited solubility and untargeted effects. Loading PX into nanoliposomes to enhance PX solubility and target their delivery as a drug delivery system has the potential to overcome these limitations. Over the other conventional method to prepare liposomes, a microfluidic system is used to formulate PX-loaded PEGylated liposomes. The impact of changing the flow rate ratio (FRR) between the aqueous and lipid phases on the particle size and polydispersity index (PDI) is investigated. Moreover, the effect of changing the polyethylene glycol (PEG) lipid ratio on the particle size, PDI, stability, encapsulation efficiency % (EE %), and release profile is studied. The physicochemical characteristics of the obtained formulation were analyzed by dynamic light scattering, FTIR spectroscopy, and AFM. This work aims to use microfluidic technology to produce PEGylated PX-loaded liposomes with a diameter of <200 nm, low PDI < 0.25 high homogeneity, and viable 28 day stability. The results show a significant impact of FRR and PEG lipid ratio on the empty liposomes' physicochemical characteristics. Among the prepared formulations, two formulations produce size-controlled, low PDI, and stable liposomes, which make them preferable for PX encapsulation. The average EE % was >90% for both formulations, and the variation in the PEG lipid ratio affected the EE % slightly; a high packing for PX was reported at different drug concentrations. A variation in the release profiles was notified for the different PEG lipid ratios.


Asunto(s)
Liposomas , Paclitaxel , Paclitaxel/química , Liposomas/química , Microfluídica , Polietilenglicoles/química , Lípidos/química , Tamaño de la Partícula
12.
Biomater Adv ; 153: 213557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37441958

RESUMEN

Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.


Asunto(s)
Bioimpresión , Diabetes Mellitus , Pie Diabético , Humanos , Antibacterianos , Lipopolisacáridos , Microfluídica , Calidad de Vida , Bacterias Gramnegativas , Bacterias Grampositivas , Vendajes , Hidrogeles , Pie Diabético/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Celulosa/uso terapéutico
13.
Int J Pharm ; 642: 123154, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37336300

RESUMEN

Breast-conserving surgery (BCS) is the primary strategy for treating early-stage breast cancer; however, the incidence of local recurrence and breast tissue loss negatively impacts patients and survivors. Furthermore, radiotherapy and/or systemic therapies are frequently advised to avoid recidivism and increase the patient's chance of survival, resulting in longer duration of treatments, and unpleasant systemic side effects. Given the poor prognosis and the heterogeneity between individuals and tumors, a patient-centered approach is fundamental. Herein we developed a multipurpose 4D printed implant made of a blend of carboxymethyl cellulose sodium salt (CMC) and cellulose nanocrystals (CNC), loaded with doxorubicin (DOX). To predict printability performance, full rheological characterization was carried out. The smart device was programmed to change size, under swelling, to better fit in the tissue cavity, resulting in a great potential for personalization, thus improving the aesthetic outcomes. The influence of the formulation and printing parameters on the morpho transformation was investigated through the swelling test, confirming the possibility to program the 4D shape. The manufactured implants were characterized by a variety of methods, including in vitro release studies. Lastly, the anticancer activity was conducted in vitro, on MDA-MB-231 cells. Implants promoted an anticancer effect of -58% viability after 72 h incubation, even when tested 4 weeks after the printing process. Overall, the morpho transformation and the in vitro studies have shown that the implant could represent a potential strategy for breast cancer following resection, to fill the void in the breast resulting from the surgery and provide an anticancer effect to avoid recurrence.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Doxorrubicina , Prótesis e Implantes
14.
Expert Opin Drug Deliv ; 20(4): 541-557, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922013

RESUMEN

INTRODUCTION: Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED: Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION: The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Glioblastoma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo , Sistemas de Liberación de Medicamentos
15.
Int J Pharm ; 636: 122818, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907280

RESUMEN

A new technological passage has emerged in the pharmaceutical field, concerning the management, application, and transfer of knowledge from humans to machines, as well as the implementation of advanced manufacturing and product optimisation processes. Machine Learning (ML) methods have been introduced to Additive Manufacturing (AM) and Microfluidics (MFs) to predict and generate learning patterns for precise fabrication of tailor-made pharmaceutical treatments. Moreover, regarding the diversity and complexity of personalised medicine, ML has been part of quality by design strategy, targeting towards the development of safe and effective drug delivery systems. The utilisation of different and novel ML techniques along with Internet of Things sensors in AM and MFs, have shown promising aspects regarding the development of well-defined automated procedures towards the production of sustainable and quality-based therapeutic systems. Thus, the effective data utilisation, prospects on a flexible and broader production of "on demand" treatments. In this study, a thorough overview has been achieved, concerning scientific achievements of the past decade, which aims to trigger the research interest on incorporating different types of ML in AM and MFs, as essential techniques for the enhancement of quality standards of customised medicinal applications, as well as the reduction of variability potency, throughout a pharmaceutical process.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microfluídica , Humanos , Preparaciones Farmacéuticas , Medicina de Precisión , Impresión Tridimensional
16.
J Pharm Pharmacol ; 75(2): 276-286, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36617180

RESUMEN

OBJECTIVES: To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. METHODS: 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. KEY FINDINGS: The PCL-CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 µg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL-CS-5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. CONCLUSIONS: The PCL-CS-5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL-CS-5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.


Asunto(s)
Quitosano , Glaucoma , Humanos , Preparaciones de Acción Retardada/química , Fluorouracilo/farmacología , Quitosano/química , Impresión Tridimensional
17.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36678566

RESUMEN

Nanomedicine has grown tremendously in recent years as a responsive strategy to find novel therapies for treating challenging pathological conditions. As a result, there is an urgent need to develop novel formulations capable of providing adequate therapeutic treatment while overcoming the limitations of traditional protocols. Lately, microfluidic technology (MF) and additive manufacturing (AM) have both acquired popularity, bringing numerous benefits to a wide range of life science applications. There have been numerous benefits and drawbacks of MF and AM as distinct techniques, with case studies showing how the careful optimization of operational parameters enables them to overcome existing limitations. Therefore, the focus of this review was to highlight the potential of the synergy between MF and AM, emphasizing the significant benefits that this collaboration could entail. The combination of the techniques ensures the full customization of MF-based systems while remaining cost-effective and less time-consuming compared to classical approaches. Furthermore, MF and AM enable highly sustainable procedures suitable for industrial scale-out, leading to one of the most promising innovations of the near future.

18.
J Pharm Pharmacol ; 75(2): 245-252, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36453867

RESUMEN

OBJECTIVES: The process of 3D printing to produce microfluidic chips is becoming commonplace, due to its quality, versatility and newfound availability. In this study, a UV liquid crystal display (LCD) printer has been implemented to produce a progression of microfluidic chips for the purpose of liposomal synthesis. The emphasis of this research is to test the limitations of UV LCD printing in terms of resolution and print speed optimisation for the production of microfluidic chips. KEY FINDINGS: By varying individual channel parameters such as channel length and internal geometries, the essential channel properties for optimal liposomal formulation are being investigated to act as a basis for future experimentation including the encapsulation of active pharmaceutical ingredients. Using the uniquely designed chips, liposomes of ≈120 nm, with polydispersity index values of ≤0.12 are able to be reproducibly synthesised. CONCLUSIONS: The influence of total flow rates and lipid choice is investigated in depth, to provide further clarification on how a microfluidic setup should be optimised. In-depth explanations of the importance of each channel parameter are also explained throughout, with reference to their importance for the properties of a successful liposome.


Asunto(s)
Liposomas , Microfluídica , Tamaño de la Partícula , Impresión Tridimensional
19.
Drug Deliv Transl Res ; 13(8): 2058-2071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-34642844

RESUMEN

3D printing has provided a new prospective in the manufacturing of personalized medical implants, including fistulas for haemodialysis (HD). In the current study, an optimized fused modelling deposition (FDM) 3D printing method has been validated, for the first time, to obtain cylindrical shaped fistulas. Printing parameters were evaluated for the manufacturing of fistulas using blank and 0.25% curcumin-loaded filaments that were produced by hot melt extrusion (HME). Four different fistula types have been designed and characterized using a variety of physicochemical characterization methods. Each design was printed three times to demonstrate printing process accuracy considering outer and inner diameter, wall thickness, width, and length. A thermoplastic polyurethane (TPU) biocompatible elastomer was chosen, showing good mechanical properties with a high elastic modulus and maximum elongation, as well as stability at high temperatures with less than 0.8% of degradation at the range between 25 and 250 °C. Curcumin release profile has been evaluated in a saline buffer, obtaining a low release (12%) and demonstrating drug could continue release for a longer period, and for as long as grafts should remain in patient body. Possibility to produce drug-loaded grafts using one-step method as well as 3D printing process and TPU filaments containing curcumin printability has been demonstrated.


Asunto(s)
Curcumina , Tecnología Farmacéutica , Humanos , Tecnología Farmacéutica/métodos , Liberación de Fármacos , Estudios Prospectivos , Impresión Tridimensional , Comprimidos/química
20.
Drug Deliv Transl Res ; 13(8): 2096-2109, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35018558

RESUMEN

The treatment strategy required for the effective healing of diabetic foot ulcer (DFU) is a complex process that is requiring several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. Furthermore, these treatments are often unsuccessful, commonly resulting in lower-limb amputation. The use of drug-loaded scaffolds to treat DFU has previously been investigated using electrospinning and fused deposition modelling (FDM) 3D printing techniques; however, the rapidly evolving field of bioprinting is creating new opportunities for innovation within this research area. In this study, 3D-bioprinted scaffolds with different designs have been fabricated for the delivery of an antibiotic (levoflocixin) to DFU. The scaffolds were fully characterised by a variety of techniques (e.g. SEM, DSC/TGA, FTIR, and mechanical characterisation), demonstrating excellent mechanical properties and providing sustained drug release for 4 weeks. This proof of concept study demonstrates the innovative potential of bioprinting technologies in fabrication of antibiotic scaffolds for the treatment of DFU.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Cicatrización de Heridas , Pie Diabético/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...