Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gigascience ; 10(1)2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33420779

RESUMEN

BACKGROUND: The evolving antibiotic-resistant behavior of health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) USA100 strains are of major concern. They are resistant to a broad class of antibiotics such as macrolides, aminoglycosides, fluoroquinolones, and many more. FINDINGS: The selection of appropriate antibiotic susceptibility examination media is very important. Thus, we use bacteriological (cation-adjusted Mueller-Hinton broth) as well as physiological (R10LB) media to determine the effect of vancomycin on USA100 strains. The study includes the profiling behavior of HA-MRSA USA100 D592 and D712 strains in the presence of vancomycin through various high-throughput assays. The US100 D592 and D712 strains were characterized at sub-inhibitory concentrations through growth curves, RNA sequencing, bacterial cytological profiling, and exo-metabolomics high throughput experiments. CONCLUSIONS: The study reveals the vancomycin resistance behavior of HA-MRSA USA100 strains in dual media conditions using wide-ranging experiments.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Atención a la Salud , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacología
2.
Cell Rep ; 29(10): 2979-2989.e15, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801066

RESUMEN

Group A Streptococcus (GAS) is a human-specific pathogen that evades the host immune response through the elaboration of multiple virulence factors. Although many of these factors have been studied, numerous proteins encoded by the GAS genome are of unknown function. Herein, we characterize a biomimetic red blood cell (RBC)-captured protein of unknown function-annotated subsequently as S protein-in GAS pathophysiology. S protein maintains the hydrophobic properties of GAS, and its absence reduces survival in human blood. S protein facilitates GAS coating with lysed RBCs to promote molecular mimicry, which increases virulence in vitro and in vivo. Proteomic profiling reveals that the removal of S protein from GAS alters cellular and extracellular protein landscapes and is accompanied by a decrease in the abundance of several key GAS virulence determinants. In vivo, the absence of S protein results in a striking attenuation of virulence and promotes a robust immune response and immunological memory.


Asunto(s)
Eritrocitos/inmunología , Evasión Inmune/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus/inmunología , Animales , Proteínas Bacterianas/inmunología , Línea Celular , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteómica/métodos , Células THP-1 , Virulencia/inmunología , Factores de Virulencia/inmunología
3.
Sci Data ; 6(1): 322, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848353

RESUMEN

Staphylococcus aureus strains have been continuously evolving resistance to numerous classes of antibiotics including methicillin, vancomycin, daptomycin and linezolid, compounding the enormous healthcare and economic burden of the pathogen. Cation-adjusted Mueller-Hinton broth (CA-MHB) is the standard bacteriological media for measuring antibiotic susceptibility in the clinical lab, but the use of media that more closely mimic the physiological state of the patient, e.g. mammalian tissue culture media, can in certain circumstances reveal antibiotic activities that may be more predictive of effectiveness in vivo. In the current study, we use both types of media to explore antibiotic resistance phenomena in hospital-acquired USA100 lineage methicillin-resistant, vancomycin-intermediate Staphylococcus aureus (MRSA/VISA) strain D712 via multidimensional high throughput analysis of growth rates, bacterial cytological profiling, RNA sequencing, and exo-metabolomics (HPLC and LC-MS). Here, we share data generated from these assays to shed light on the antibiotic resistance behavior of MRSA/VISA D712 in both bacteriological and physiological media.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nafcilina/farmacología , Medios de Cultivo , Ensayos Analíticos de Alto Rendimiento , Metabolómica , Staphylococcus aureus Resistente a Meticilina/fisiología , Análisis de Secuencia de ARN
4.
Sci Data ; 6(1): 43, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028276

RESUMEN

Cation adjusted-Mueller Hinton Broth (CA-MHB) is the standard bacteriological medium utilized in the clinic for the determination of antibiotic susceptibility. However, a growing number of literature has demonstrated that media conditions can cause a substantial difference in the efficacy of antibiotics and antimicrobials. Recent studies have also shown that minimum inhibitory concentration (MIC) tests performed in standard cell culture media (e.g. RPMI and DMEM) are more indicative of in vivo antibiotic efficacy, presumably because they are a better proxy for the human host's physiological conditions. The basis for the bacterial media dependent susceptibility to antibiotics remains undefined. To address this question, we characterized the physiological response of methicillin-resistant Staphylococcus aureus (MRSA) during exposure to sub-inhibitory concentrations of the beta-lactam antibiotic nafcillin in either CA-MHB or RPMI + 10% LB (R10LB). Here, we present high quality transcriptomic, exo-metabolomic and morphological data paired with growth and susceptibility results for MRSA cultured in either standard bacteriologic or more physiologic relevant medium.


Asunto(s)
Antibacterianos/farmacología , Técnicas Bacteriológicas , Medios de Cultivo , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana/normas , Nafcilina/farmacología , Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/normas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Transcriptoma
5.
ACS Chem Biol ; 13(12): 3251-3258, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30133247

RESUMEN

Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.


Asunto(s)
Proteínas Bacterianas/metabolismo , Replicación del ADN/fisiología , Nucleósido-Fosfato Quinasa/metabolismo , Ribonucleótido Reductasas/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/citología , Bacillus subtilis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Técnicas Bacteriológicas/métodos , Proteínas Portadoras/metabolismo , Análisis Discriminante , Endopeptidasa Clp/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica/métodos , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Nucleósido-Fosfato Quinasa/genética , Proteínas Recombinantes de Fusión , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Ácidos Teicoicos/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
6.
ACS Chem Biol ; 11(8): 2222-31, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193499

RESUMEN

Increasing antimicrobial resistance has become a major public health crisis. New antimicrobials with novel mechanisms of action (MOA) are desperately needed. We previously developed a method, bacterial cytological profiling (BCP), which utilizes fluorescence microscopy to rapidly identify the MOA of antimicrobial compounds. BCP is based upon our discovery that cells treated with antibiotics affecting different metabolic pathways generate different cytological signatures, providing quantitative information that can be used to determine a compound's MOA. Here, we describe a system, rapid inhibition profiling (RIP), for creating cytological profiles of new antibiotic targets for which there are currently no chemical inhibitors. RIP consists of the fast, inducible degradation of a target protein followed by BCP. We demonstrate that degrading essential proteins in the major metabolic pathways for DNA replication, transcription, fatty acid biosynthesis, and peptidoglycan biogenesis in Bacillus subtilis rapidly produces cytological profiles closely matching that of antimicrobials targeting the same pathways. Additionally, RIP and antibiotics targeting different steps in fatty acid biosynthesis can be differentiated from each other. We utilize RIP and BCP to show that the antibacterial MOA of four nonsteroidal anti-inflammatory antibiotics differs from that proposed based on in vitro data. RIP is a versatile method that will extend our knowledge of phenotypes associated with inactivating essential bacterial enzymes and thereby allow for screening for molecules that inhibit novel essential targets.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Proteínas Bacterianas/metabolismo , Replicación del ADN , Análisis Discriminante , Ácidos Grasos/biosíntesis , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Transcripción Genética
7.
J Antibiot (Tokyo) ; 69(5): 353-61, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26648120

RESUMEN

Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Bacteriocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/metabolismo , Polienos/farmacología
8.
Environ Microbiol ; 17(9): 3391-406, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25711932

RESUMEN

Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.


Asunto(s)
Diglicéridos/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Lipoproteína Lipasa/metabolismo , Sinorhizobium meliloti/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Lipoproteína Lipasa/genética , Datos de Secuencia Molecular , Fosfolípidos/metabolismo , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/genética
9.
J Antibiot (Tokyo) ; 67(1): 99-104, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24149839

RESUMEN

Most (75%) of the anti-infectives that save countless lives and enormously improve quality of life originate from microbes found in nature. Herein, we described a global visualization of the detectable molecules produced from a single microorganism, which we define as the 'molecular network' of that organism, followed by studies to characterize the cellular effects of antibacterial molecules. We demonstrate that Streptomyces roseosporus produces at least four non-ribosomal peptide synthetase-derived molecular families and their gene subnetworks (daptomycin, arylomycin, napsamycin and stenothricin) were identified with different modes of action. A number of previously unreported analogs involving truncation, glycosylation, hydrolysis and biosynthetic intermediates and/or shunt products were also captured and visualized by creation of a map through MS/MS networking. The diversity of antibacterial compounds produced by S. roseosporus highlights the importance of developing new approaches to characterize the molecular capacity of an organism in a more global manner. This allows one to more deeply interrogate the biosynthetic capacities of microorganisms with the goal to streamline the discovery pipeline for biotechnological applications in agriculture and medicine. This is a contribution to a special issue to honor Chris Walsh's amazing career.


Asunto(s)
Antibacterianos/biosíntesis , Genoma Bacteriano , Genómica/métodos , Streptomyces/genética , Espectrometría de Masas en Tándem/métodos , Biotecnología/métodos , Minería de Datos , Glicosilación , Hidrólisis , Familia de Multigenes
10.
Proc Natl Acad Sci U S A ; 110(28): E2611-20, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798442

RESUMEN

The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779(T). The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family-gene cluster families of hundreds or more diverse organisms in one single MS/MS network.


Asunto(s)
Familia de Multigenes , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Pseudomonas/genética
11.
Mol Microbiol ; 84(3): 486-500, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22469514

RESUMEN

Bacillus subtilis SDP is a peptide toxin that kills cells outside the biofilm to support continued growth. We show that purified SDP acts like endogenously produced SDP; it delays sporulation, and the SdpI immunity protein confers SDP resistance. SDP kills a variety of Gram-positive bacteria in the phylum Firmicutes, as well as Escherichia coli with a compromised outer membrane, suggesting it participates in defence of the B. subtilis biofilm against Gram-positive bacteria as well as cannibalism. Fluorescence microscopy reveals that the effect of SDP on cells differs from that of nisin, nigericin, valinomycin and vancomycin-KCl, but resembles that of CCCP, DNP and azide. Indeed, SDP rapidly collapses the PMF as measured by fluorometry and flow cytometry, which triggers the slower process of autolysis. This secondary consequence of SDP treatment is not required for cell death since the autolysin-defective lytC, lytD, lytE, lytF strain fails to be lysed but is nevertheless killed by SDP. Collapsing the PMF is an ideal mechanism for a toxin involved in cannibalism and biofilm defence, since this would incapacitate neighbouring cells by inhibiting motility and secretion of proteins and toxins. It would also induce autolysis in many Gram-positive species, thereby releasing nutrients that promote biofilm growth.


Asunto(s)
Bacillus subtilis/citología , Bacillus subtilis/metabolismo , Toxinas Bacterianas/metabolismo , Bacteriólisis , Fuerza Protón-Motriz , Bacillus subtilis/química , Bacillus subtilis/genética , Bacterias/química , Bacterias/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Fuerza Protón-Motriz/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 107(37): 16286-90, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20805502

RESUMEN

During bacterial cannibalism, a differentiated subpopulation harvests nutrients from their genetically identical siblings to allow continued growth in nutrient-limited conditions. Hypothesis-driven imaging mass spectrometry (IMS) was used to identify metabolites active in a Bacillus subtilis cannibalism system in which sporulating cells lyse nonsporulating siblings. Two candidate molecules with sequences matching the products of skfA and sdpC, genes for the proposed cannibalistic factors sporulation killing factor (SKF) and sporulation delaying protein (SDP), respectively, were identified and the structures of the final products elucidated. SKF is a cyclic 26-amino acid (aa) peptide that is posttranslationally modified with one disulfide and one cysteine thioether bridged to the α-position of a methionine, a posttranslational modification not previously described in biology. SDP is a 42-residue peptide with one disulfide bridge. In spot test assays on solid medium, overproduced SKF and SDP enact a cannibalistic killing effect with SDP having higher potency. However, only purified SDP affected B. subtilis cells in liquid media in fluorescence microscopy and growth assays. Specifically, SDP treatment delayed growth in a concentration-dependent manner, caused increases in cell permeability, and ultimately caused cell lysis accompanied by the production of membrane tubules and spheres. Similarly, SDP but not SKF was able to inhibit the growth of the pathogens Staphylococcus aureus and Staphylococcus epidermidis with comparable IC(50) to vancomycin. This investigation, with the identification of SKF and SDP structures, highlights the strength of IMS in investigations of metabolic exchange of microbial colonies and also demonstrates IMS as a promising approach to discover novel biologically active molecules.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/análisis , Espectrometría de Masas/métodos , Bacillus subtilis/metabolismo , Estructura Molecular , Esporas Bacterianas
13.
EMBO J ; 28(22): 3461-75, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19779460

RESUMEN

Proteins in the YidC/Oxa1/Alb3 family have essential functions in membrane protein insertion and folding. Bacillus subtilis encodes two YidC homologs, one that is constitutively expressed (spoIIIJ/yidC1) and a second (yqjG/yidC2) that is induced in spoIIIJ mutants. Regulated induction of yidC2 allows B. subtilis to maintain capacity of the membrane protein insertion pathway. We here show that a gene located upstream of yidC2 (mifM/yqzJ) serves as a sensor of SpoIIIJ activity that regulates yidC2 translation. Decreased SpoIIIJ levels or deletion of the MifM transmembrane domain arrests mifM translation and unfolds an mRNA hairpin that otherwise blocks initiation of yidC2 translation. This regulated translational arrest and yidC2 induction require a specific interaction between the MifM C-terminus and the ribosomal polypeptide exit tunnel. MifM therefore acts as a ribosome-nascent chain complex rather than as a fully synthesized protein. B. subtilis MifM and the previously described secretion monitor SecM in Escherichia coli thereby provide examples of the parallel evolution of two regulatory nascent chains that monitor different protein export pathways by a shared molecular mechanism.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de la Membrana/biosíntesis , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , Regulación hacia Arriba
14.
J Virol ; 82(5): 2501-14, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18094177

RESUMEN

Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX(2)CX(4)HX(4)C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.


Asunto(s)
Nucleocápside/fisiología , ADN Polimerasa Dirigida por ARN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Escherichia coli/fisiología , Microscopía Electrónica , Microscopía Fluorescente , Mutagénesis , Saccharomyces cerevisiae/fisiología
15.
J Virol ; 81(13): 6957-72, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17442718

RESUMEN

The Ty3 retrotransposon assembles into 50-nm virus-like particles that occur in large intracellular clusters in the case of wild-type (wt) Ty3. Within these particles, maturation of the Gag3 and Gag3-Pol3 polyproteins by Ty3 protease produces the structural proteins capsid (CA), spacer, and nucleocapsid. Secondary and tertiary structure predictions showed that, like retroviral CA, Ty3 CA contains a large amount of helical structure arranged in amino-terminal and carboxyl-terminal bundles. Twenty-six mutants in which alanines were substituted for native residues were used to study CA subdomain functions. Transposition was measured, and particle morphogenesis and localization were characterized by analysis of protein processing, cDNA production, genomic RNA protection, and sedimentation and by fluorescence and electron microscopy. These measures defined five groups of mutants. Proteins from each group could be sedimented in a large complex. Mutations in the amino-terminal domain reduced the formation of fluorescent Ty3 protein foci. In at least one major homology region mutant, Ty3 protein concentrated in foci but no wt clusters of particles were observed. One mutation in the carboxyl-terminal domain shifted assembly from spherical particles to long filaments. Two mutants formed foci separate from P bodies, the proposed sites of assembly, and formed defective particles. P-body association was therefore found to be not necessary for assembly but correlated with the production of functional particles. One mutation in the amino terminus blocked transposition after cDNA synthesis. Our data suggest that Ty3 proteins are concentrated first, assembly associated with P bodies occurs, and particle morphogenesis concludes with a post-reverse transcription, CA-dependent step. Particle formation was generally resistant to localized substitutions, possibly indicating that multiple domains are involved.


Asunto(s)
Cápside , Productos del Gen gag/genética , Cuerpos de Inclusión/genética , Mutación Missense , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sustitución de Aminoácidos , Cápside/metabolismo , ADN Polimerasa III , ADN Complementario/biosíntesis , ADN Complementario/genética , Productos del Gen gag/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/ultraestructura , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA