Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Brain Struct Funct ; 222(4): 1809-1827, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27783219

RESUMEN

Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.


Asunto(s)
Región CA1 Hipocampal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Estimulación Eléctrica , Neuronas GABAérgicas/citología , Interneuronas/citología , Masculino , Ratas Sprague-Dawley
3.
Cereb Cortex ; 26(3): 1081-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25452570

RESUMEN

Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.


Asunto(s)
Región CA1 Hipocampal/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Receptor de Adenosina A1/metabolismo , Receptores de GABA-A/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Immunoblotting , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/citología , Interneuronas/efectos de los fármacos , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Ratas Wistar , Técnicas de Cultivo de Tejidos
4.
Hippocampus ; 25(5): 566-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25402014

RESUMEN

Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity.


Asunto(s)
Región CA1 Hipocampal/fisiología , Receptor de Adenosina A2A/metabolismo , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Optogenética , Técnicas de Placa-Clamp , Potasio/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Sinapsis/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
5.
J Neurosci ; 34(46): 15208-22, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392490

RESUMEN

Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl(-)) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV(+)) interneurons. Channelrhodopsin-2-mediated activation of PV(+) interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV(+) interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl(-) accumulation subverts the actions of PV(+) interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures.


Asunto(s)
Región CA3 Hipocampal/fisiopatología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Parvalbúminas/metabolismo , Células Piramidales/fisiopatología , Convulsiones/fisiopatología , Potenciales de Acción/fisiología , Animales , Ratones , Modelos Neurológicos , Optogenética , Ratas
6.
J Neurosci ; 32(19): 6511-6, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573673

RESUMEN

Glutamatergic synapses on some hippocampal GABAergic interneurons exhibit activity-induced long-term potentiation (LTP). Interneuron types within the CA1 area expressing mutually exclusive molecular markers differ in LTP responses. Potentiation that depends on calcium-permeable (CP) AMPA receptors has been characterized in oriens-lacunosum moleculare (O-LM) interneurons, which express parvalbumin and somatostatin (SM). However, it is unknown how widely CP-AMPAR-dependent plasticity is expressed among different GABAergic interneuron types. Here we examine synaptic plasticity in rat hippocampal O-LM cells and two other interneuron types expressing either nitric oxide synthase (NOS) or cholecystokinin (CCK), which are known to be physiologically and developmentally distinct. We report similar CP-AMPAR-dependent LTP in NOS-immunopositive ivy cells and SM-expressing O-LM cells to afferent fiber theta burst stimulation. The potentiation in both cell types is induced at postsynaptic membrane potentials below firing threshold, and induction is blocked by intense spiking simultaneously with afferent stimulation. The strong inward rectification and calcium permeability of AMPARs is explained by a low level of GluA2 subunit mRNA expression. LTP is not elicited in CCK-expressing Schaffer collateral-associated cells, which lack CP-AMPARs and express high levels of the GluA2 subunit. The results show that CP-AMPAR-mediated synaptic potentiation is common in hippocampal interneuron types and occurs in interneurons of both feedforward and feedback inhibitory pathways.


Asunto(s)
Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Ácido Glutámico/fisiología , Hipocampo/metabolismo , Interneuronas/metabolismo , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Interneuronas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores AMPA/fisiología , Sinapsis/fisiología
7.
Neuropharmacology ; 62(3): 1164-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21864547

RESUMEN

Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue.


Asunto(s)
Modelos Animales de Enfermedad , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Esquizofrenia/genética , Animales , Humanos , Ratones , Esquizofrenia/etiología
8.
Cereb Cortex ; 22(7): 1520-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21878485

RESUMEN

Neuregulin 1 (NRG1) is a growth factor involved in neurodevelopment and plasticity. It is a schizophrenia candidate gene, and hippocampal expression of the NRG1 type I isoform is increased in the disorder. We have studied transgenic mice overexpressing NRG1 type I (NRG1(tg-type I)) and their wild-type littermates and measured hippocampal electrophysiological and behavioral phenotypes. Young NRG1(tg-type I) mice showed normal memory performance, but in older NRG1(tg-type I) mice, hippocampus-dependent spatial working memory was selectively impaired. Hippocampal slice preparations from NRG1(tg-type I) mice exhibited a reduced frequency of carbachol-induced gamma oscillations and an increased tendency to epileptiform activity. Long-term potentiation in NRG1(tg-type I) mice was normal. The results provide evidence that NRG1 type I impacts on hippocampal function and circuitry. The effects are likely mediated via inhibitory interneurons and may be relevant to the involvement of NRG1 in schizophrenia. However, the findings, in concert with those from other genetic and pharmacological manipulations of NRG1, emphasize the complex and pleiotropic nature of the gene, even with regard to a single isoform.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Neurregulina-1/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Ratones , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulación hacia Arriba/fisiología
10.
Neuropharmacology ; 60(5): 712-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21185319

RESUMEN

Recent studies of excitatory transmission in cortical interneurons reveal a surprising diversity of forms of long-term plasticity. LTP and LTD can be elicited at many synapses on interneurons, and pharmacological manipulations implicate NMDA, calcium-permeable AMPA and metabotropic receptors in the induction of plasticity. Distinct patterns are beginning to emerge in identified pathways, as defined by the cells of origin of the presynaptic glutamatergic axons and the postsynaptic interneuron subtypes. We review this literature, and speculate about the possible adaptive significance of long-term activity-dependent changes in transmission for cortical information processing. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.


Asunto(s)
Corteza Cerebral/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Interneuronas/patología , Receptores de GABA/fisiología , Sinapsis/fisiología
11.
J Neurosci ; 30(4): 1337-47, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20107060

RESUMEN

Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Sinapsis/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Forma de la Célula/fisiología , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Interneuronas/citología , Interneuronas/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-21423494

RESUMEN

Inhibitory circuits in the brain rely on GABA-releasing interneurons. For long, inhibitory circuits were considered weakly plastic in the face of patterns of neuronal activity that trigger long-term changes in the synapses between excitatory principal cells. Recent studies however have shown that GABAergic circuits undergo various forms of long-term plasticity. For the purpose of this review, we identify three major long-term plasticity expression sites. The first locus is the glutamatergic synapses that excite GABAergic inhibitory cells and drive their activity. Such synapses, on many but not all inhibitory interneurons, exhibit long-term potentiation (LTP) and depression (LTD). Second, GABAergic synapses themselves can undergo changes in GABA release probability or postsynaptic GABA receptors. The third site of plasticity is in the postsynaptic anion gradient of GABAergic synapses; coincident firing of GABAergic axons and postsynaptic neurons can cause a long-lasting change in the reversal potential of GABA(A) receptors mediating fast inhibitory postsynaptic potentials. We review the recent literature on these forms of plasticity by asking how they may be triggered by specific patterns of pre- and postsynaptic action potentials, although very few studies have directly examined spike-timing dependent plasticity (STDP) protocols in inhibitory circuits. Plasticity of interneuron recruitment and of GABAergic signaling provides for a rich flexibility in inhibition that may be central to many aspects of brain function. We do not consider plasticity at glutamatergic synapses on Purkinje cells and other GABAergic principal cells.

13.
J Neurosci ; 29(4): 939-50, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19176803

RESUMEN

Some interneurons of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) that is induced by presynaptic glutamate release when the postsynaptic membrane potential is hyperpolarized. This "anti-Hebbian" form of LTP is prevented by postsynaptic depolarization or by blocking AMPA and kainate receptors. Although both AMPA and kainate receptors are expressed in hippocampal interneurons, their relative roles in anti-Hebbian LTP are not known. Because interneuron diversity potentially conceals simple rules underlying different forms of plasticity, we focus on glutamatergic synapses onto a subset of interneurons with dendrites in stratum oriens and a main ascending axon that projects to stratum lacunosum moleculare, the oriens-lacunosum moleculare (O-LM) cells. We show that anti-Hebbian LTP in O-LM interneurons has consistent induction and expression properties, and is prevented by selective inhibition of AMPA receptors. The majority of the ionotropic glutamatergic synaptic current in these cells is mediated by inwardly rectifying Ca(2+)-permeable AMPA receptors. Although GluR5-containing kainate receptors contribute to synaptic currents at high stimulus frequency, they are not required for LTP induction. Glutamatergic synapses on O-LM cells thus behave in a homogeneous manner and exhibit LTP dependent on Ca(2+)-permeable AMPA receptors.


Asunto(s)
Hipocampo/citología , Interneuronas/fisiología , Potenciación a Largo Plazo/fisiología , Receptores AMPA/fisiología , Receptores de Ácido Kaínico/fisiología , Anestésicos Locales/farmacología , Animales , Biofisica , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Picrotoxina/farmacología , Propanolaminas/farmacología , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/farmacología
14.
Nat Rev Neurosci ; 8(9): 687-99, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17704811

RESUMEN

Rapid memory formation relies, at least in part, on long-term potentiation (LTP) of excitatory synapses. Inhibitory interneurons of the hippocampus, which are essential for information processing, have recently been found to exhibit not one, but two forms of LTP. One form resembles LTP that occurs in pyramidal neurons, which depends on N-methyl-D-aspartate receptors and is triggered by coincident pre- and postsynaptic activity. The other depends on Ca2+ influx through glutamate receptors that preferentially open when the postsynaptic neuron is at rest. Here we review these contrasting forms of LTP and describe how they are mirrored by two forms of long-term depression. We further discuss how the remarkable plasticity of glutamatergic synapses on interneurons greatly enhances the computational capacity of the cortical microcircuit.


Asunto(s)
Hipocampo/citología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Modelos Neurológicos
15.
Science ; 315(5816): 1262-6, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17332410

RESUMEN

Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.


Asunto(s)
Hipocampo/fisiología , Interneuronas/fisiología , Potenciación a Largo Plazo , Inhibición Neural/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Masculino , Potenciales de la Membrana , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Espermina/análogos & derivados , Espermina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA