Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 13(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578822

RESUMEN

Flavonoids, found in a wide variety of foods and plants, are considered to play an important role in the prevention and treatment of osteoporosis. Our previous studies demonstrated that Erythrina cortex extract (EC) rich in prenylated isoflavonoids exerted bone protective effects in ovariectomized (OVX) rats. The present study aimed to investigate the interactions of gut microbiota with the EC extract to explore the underlying mechanisms involved in its beneficial effects on bone. Sprague-Dawley female rats of 3-months-old were ovariectomized and treated with EC extract for 12 weeks. EC extract reversed ovariectomy-induced deterioration of bone mineral density and bone microarchitecture as well as downregulated cathepsin K (Ctsk) and upregulated runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) in the tibia of OVX rats. Its protective effects on bone were correlated with changes in microbial richness and the restorations of several genera. EC increased the serum circulating levels of acetate and propionate in OVX rats. We conclude that the bone protective effects of EC extract were associated with the changes in microbial compositions and serum short chain fatty acids (SCFAs) in OVX rats.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Erythrina , Flavonoides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Osteoporosis/prevención & control , Extractos Vegetales/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Ovariectomía , Ratas , Ratas Sprague-Dawley
2.
J Agric Food Chem ; 69(33): 9571-9584, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378924

RESUMEN

Fungal cell wall synthesizing enzymes or remodeling enzymes represent key factors for the interaction of plant pathogen and antifungal agents, which are regarded as potential biocontrol agents. In this study, a novel endo-ß-1,3-glucanase from Magnaporthe oryzae was expressed and characterized. The expression of MoGluB was significantly upregulated after 2 days of liquid culture and 48 h after infection, indicating that it may be involved in cell wall reconstitution. Purified MoGluB exhibited high activity on insoluble ß-glucans, with a specific activity of 8.18 U/mg toward yeast glucan at pH 9.0 and 50 °C. MoGluB hydrolyzed pachymaran and yeast glucan into oligosaccharides dominated by laminaripentaose, suggesting that it is an endo-ß-1,3-glucanase. Incubation of 8 µg of MoGluB with 106 spores/mL resulted in the inhibition of conidial germination and appressorium formation of M. oryzae, illustrating effective biocontrol activity. Hydrolysates of pachymaran induced the expression of defense genes restricting M. oryzae infection in rice plants, indicating an immunostimulatory effect of MoGluB hydrolysates.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Pared Celular , Proteínas Fúngicas/genética , Enfermedades de las Plantas
3.
J Agric Food Chem ; 69(11): 3351-3361, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33688732

RESUMEN

Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, AqCoA, from Aquabacterium sp. A7-Y. The enzyme showed a specific activity of 18 U/mg toward 95% deacetylated chitosan at pH 5.0 and 40 °C. AqCoA also showed activity toward sodium carboxymethylcellulose, indicating substrate promiscuity. AqCoA hydrolyzed chitosan into chitooligosaccharides (CoA-COSs) with degrees of polymerization (DPs) of 3-5 but showed no activity toward CoA-COSs with DPs <6, indicating an endo-type activity. At 2.5 µg/mL, AqCoA inhibited appressorium formation of Magnaporthe oryzae; the produced CoA-COSs also inhibited the growth of M. oryzae and Fusarium oxysporum. Furthermore, CoA-COSs acted as immune elicitors in rice by inducing the reactive oxygen species burst and the expression of defense genes. These results demonstrated that AqCoA and its resulting CoA-COSs might be effective tools for protecting plants against pathogenic fungi.


Asunto(s)
Quitina , Quitosano , Glicósido Hidrolasas , Enfermedades de las Plantas/microbiología , Ascomicetos , Quitina/análogos & derivados , Fusarium , Oligosacáridos , Enfermedades de las Plantas/prevención & control
4.
Plant Sci ; 292: 110367, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32005375

RESUMEN

Soybean mosaic virus (SMV) is a major pathogen causing yield loss. Developing soybean plants tolerant or resistant to SMV is important for mitigating the adverse effects of the viral infection. However, most studies have focused on the resistance to normal SMV strains. Thus, investigations of the resistance or tolerance to the novel recombinant SMV strain have been limited. To address the threat of the recombinant SMV, two soybean parent genotypes with contrasting reactions to the recombinant SMV and 211 F9:11 recombinant inbred lines were evaluated under artificial inoculation conditions. The JD12 plants are resistant to the recombinant SMV, whereas HT is highly tolerant, but still susceptible. Genetic analyses suggested that the resistance of JD12 is controlled by a single dominant gene and the tolerance is a quantitative trait. The QTL mapping results revealed one QTL (qTsmv-13) for resistance and two QTLs (qTsmv-2 and qTsmv-3) for tolerance. A comparison between known resistance genes and the QTLs identified in this study suggested that qTsmv-13 and qTsmv-2 may correspond to Rsv1 and Rsv4, respectively, whereas qTsmv-3 represents a newly identified QTL for SMV tolerance. We further delimited qTsmv-3 to an interval of approximately 86 kb with a map-based cloning strategy. Only two of five candidate genes, Glyma.03G00550 and Glyma.03G00570, varied between the parents. Additionally, Glyma.03G00550, which is a multidrug and toxic compound extrusion transporter gene, is the likely candidate gene for qTsmv-3. In summary, our research opens a new avenue for formulating strategies to breed soybean varieties tolerant to SMV.


Asunto(s)
Genes de Plantas , Glycine max/genética , Enfermedades de las Plantas/genética , Potyvirus/fisiología , Mapeo Cromosómico , Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo , Glycine max/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...