Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
1.
Front Surg ; 11: 1360982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966233

RESUMEN

Background: Oblique lateral interbody fusion (OLIF) combined with transpedicular screw fixation has been practiced for degenerative spinal diseases of elderly patients for years. However, overweight patients have been shown to have longer operative times and more complications from surgery. The effect on clinical outcome is still uncertified. The objective of this study was to determine is overweight a risk factor to clinical outcome of OLIF combined with transpedicular screw fixation technique. Material and methods: A retrospective study in patients submitted to OLIF combined with transpedicular screw fixation from January 2018 to August 2019 was conducted. VAS score, ODI score and EQ5D were measured before the operation and one year after the operation. Results: A total of 111 patients were included with 48 patients in the non-obese group and 55 patients in the overweight/obese group. There was no significant difference between the two groups in gender, age, smoking history, hypertension, chronic kidney disease and diabetes mellitus. Overweight/obese group has higher BMI (28.4 vs. 22.7, p < 0.001) than non-obese group. There was no difference between the two groups in pre-operative VAS score, ODI score and EQ5D score. However, the healthy weight group improved much more than the overweight score in VAS score, ODI score and EQ5D score. Conclusion: The overweight/obese patient group had clinical outcomes worse than the non-obese group in terms of pain relief and life functions.

2.
New Phytol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898642

RESUMEN

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.

4.
FEBS Lett ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813713

RESUMEN

Elevated oxidative stress, which threatens genome stability, has been detected in almost all types of cancers. Cells employ various DNA repair pathways to cope with DNA damage induced by oxidative stress. Recently, a lot of studies have provided insights into DNA damage response upon oxidative stress, specifically in the context of transcriptionally active genomes. Here, we summarize recent studies to help understand how the transcription is regulated upon DNA double strand breaks (DSB) and how DNA repair pathways are selectively activated at the damage sites coupling with transcription. The role of RNA molecules, especially R-loops and RNA modifications during the DNA repair process, is critical for protecting genome stability. This review provides an update on how cells protect transcribed genome loci via transcription-coupled repair pathways.

5.
Sleep Med Rev ; 75: 101928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614049

RESUMEN

The sleep quality of lowlanders in hypoxic environments has become increasingly important with an increase in highland and alpine activities. This study aimed to identify the effects of acute exposure to hypoxia on the sleep structure of lowlanders and to analyze the changes in sleep indicators at varying levels of hypoxia. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-three studies were screened and included in the quantitative analysis. The results showed that acute exposure to hypoxia reduced sleep quality in lowlanders. Post-sleep arousal events and the percentage of N1 were significantly increased, whereas total sleep time, sleep efficiency, and the percentage of N3 and rapid eye movement sleep were significantly decreased in hypoxic environments. Acute exposure to hypoxia had the greatest negative impact on wakefulness after sleep onset (WASO). In addition, a larger decrease in sleep efficiency and higher increase in the percentages of N1 and WASO were observed when lowlanders were exposed to higher levels of hypoxia. This study clarifies the quantitative effects of acute hypoxic exposure on sleep in lowlanders based on original studies and explains the sleep disorders faced by lowlanders in hypoxic environments.


Asunto(s)
Hipoxia , Adulto , Humanos , Altitud , Nivel de Alerta/fisiología , Hipoxia/fisiopatología , Sueño/fisiología , Calidad del Sueño , Fases del Sueño/fisiología , Sueño REM/fisiología , Vigilia/fisiología
6.
Huan Jing Ke Xue ; 45(2): 744-754, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471914

RESUMEN

As one of the important paths for China to achieve the "dual carbon" strategy, developing hydrogen fuel cell vehicles is currently being promoted in various regions across the country, including passenger cars, coaches, and heavy-duty trucks. Quantifying the carbon reduction potential of hydrogen fuel cell vehicles for different vehicle types and regions has become a hot research topic. Using a life cycle assessment method that considers future vehicle fuel economy, power generation carbon emission factors, hydrogen production carbon emission factors, and regional differences in the scale and hydrogen production methods, this study quantitatively evaluated the life cycle carbon emissions of different types of vehicles, including fuel cell vehicles (FCV), traditional fuel vehicles (ICEV), and battery electric vehicles (BEV). We compared and analyzed the carbon reduction potential of hydrogen fuel cell vehicles at different times and in different regions and conducted an uncertainty analysis on hydrogen consumption per hundred kilometers. The results showed that by 2025, the life cycle carbon emissions of hydrogen fuel cell coaches would decrease by 36.0% compared to that of traditional fuel coaches, but the reduction in carbon emissions for hydrogen fuel cell heavy-duty trucks was not significant. By 2035, as the hydrogen energy source structure in China continues to improve, the life cycle carbon emissions of hydrogen fuel cell heavy-duty trucks were predicted to decrease by 36.5% compared to that of traditional fuel heavy-duty trucks. The decarbonization potential was most significant for heavy-duty trucks compared to that of passenger cars and coaches. Taking the Beijing-Tianjin-Hebei demonstration group as an example in 2035, as the hydrogen consumption per hundred kilometers decreases by 20%, the carbon reduction potential of FCV passenger cars, coaches, and heavy-duty trucks would increase by 7.29%, 9.93%, and 19.57%, respectively. Therefore, it is recommended to prioritize the promotion of hydrogen fuel cell coaches in the short term, heavy-duty trucks in the long term, and passenger cars as a supplement. Promoting hydrogen fuel cell vehicles in different regions and stages will help advance the low-carbon development of the automotive industry in China.

7.
Sci Rep ; 14(1): 7065, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528001

RESUMEN

In the future, novel and highly pathogenic viruses may re-emerge, leading to a surge in healthcare demand. It is essential for urban epidemic control to investigate different cities' spatiotemporal spread characteristics and medical carrying capacity during the early stages of COVID-19. This study employed textual analysis, mathematical statistics, and spatial analysis methods to examine the situation in six highly affected Chinese cities. The findings reveal that these cities experienced three phases during the initial outbreak of COVID-19: "unknown-origin incubation", "Wuhan-related outbreak", and "local exposure outbreak". Cities with a high number of confirmed cases exhibited a multicore pattern, while those with fewer cases displayed a single-core pattern. The cores were distributed hierarchically in the central built-up areas of cities' economic, political, or transportation centers. The radii of these cores shrank as the central built-up area's level decreased, indicating a hierarchical decay and a core-edge structure. It suggests that decentralized built environments (non-clustered economies and populations) are less likely to facilitate large-scale epidemic clusters. Additionally, the deployment of designated hospitals in these cities was consistent with the spatial distribution of the epidemic; however, their carrying capacity requires urgent improvement. Ultimately, the essence of prevention and control is the governance of human activities and the efficient management of limited resources about individuals, places, and materials through leveraging IT and GIS technologies to address supply-demand contradictions.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , Ciudades/epidemiología , SARS-CoV-2 , Brotes de Enfermedades , China/epidemiología
8.
Nat Commun ; 15(1): 1568, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383600

RESUMEN

Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.


Asunto(s)
Reparación del ADN , Estructuras R-Loop , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación
9.
Nat Commun ; 15(1): 1254, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341424

RESUMEN

It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.


Asunto(s)
Bacteriófagos , Hylobates , Hylobatidae , Animales , Estaciones del Año , Ecosistema , Viroma , Dieta , Bacteriófagos/genética , Frutas
10.
Virol J ; 21(1): 4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178220

RESUMEN

BACKGROUND: Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS: We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS: 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS: The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.


Asunto(s)
MicroARNs , Animales , Humanos , Porcinos , MicroARNs/genética , MicroARNs/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Tupaia , Perfilación de la Expresión Génica , Tupaiidae/genética , Musarañas , ARN Mensajero
11.
Cell Rep ; 43(1): 113610, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165804

RESUMEN

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Ubiquitinación , Reparación del ADN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Daño del ADN , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
12.
Med Res Rev ; 44(2): 686-706, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37983866

RESUMEN

Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Aurora Quinasa B/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Aurora Quinasa A/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
13.
Chinese Medical Ethics ; (6): 518-521, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012933

RESUMEN

The ethics committee of organ transplantation technology and clinical application in a hospital has encountered some difficulties and typical cases in its review work and practice for many years. Sometimes, it is difficult to make a decision in these dilemmas. Based on the previous experience of the hospital in the ethical review of organ donation and transplantation, combined with two typical cases, this paper discussed and analyzed two review points of whether the voluntary unpaid donation and the principle of informed consent were met, and whether the risk-benefit ratio was reasonable, and put forward relevant ethical and legal countermeasure for further research by institutional ethics committees and other parties, in order to provide reference for discussing the practical problems and ethical confusion of ethical review of organ donation and transplantation.

14.
ACS Omega ; 8(44): 41391-41401, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970033

RESUMEN

Gas-phase NbMgn (n = 2-12) clusters were fully searched by CALYPSO software, and then the low-energy isomers were further optimized and calculated under DFT. It is shown that the three lowest energy isomers of NbMgn (n = 3-12) at each size are grown from two seed structures, i.e., tetrahedral and pentahedral structures, and the transition size occurs at the NbMg8 cluster. Interestingly, the relative stability calculations of the NbMg8 cluster ground-state isomer stand out under the examination of several parameters' calculations. The charge-transfer properties of the clusters of the ground-state isomers of various sizes had been comprehensively investigated. In order to be able to provide data guidance for future experimental probing of these ground-state clusters, this work also predicted infrared and Raman spectra at the same level of theoretical calculations. The results show that the multipeak nature of the IR and Raman spectra predicts that it is difficult to distinguish them directly. Finally, the optical properties of these clusters were investigated by calculating the static linear, second-order nonlinear, and third-order nonlinear coefficients. Importantly and interestingly, the NbMg8 cluster was shown to have superior nonlinear optical characteristics to all other clusters; thus, it is a powerful candidate for a potentially ultrasensitive nonlinear optical response device for some special purpose.

15.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37932012

RESUMEN

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Reparación de la Incompatibilidad de ADN , Animales , Ratones , Reparación de la Incompatibilidad de ADN/genética , Mutaciones Letales Sintéticas , ADN , Inmunoterapia
16.
Investig Clin Urol ; 64(6): 588-596, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37932570

RESUMEN

PURPOSE: Hydronephrosis is a common pediatric urological condition, characterized by dilation of the renal collecting system. Accurate identification of the severity of hydronephrosis is crucial in clinical management, as high-grade hydronephrosis can cause significant damage to the kidney. In this pilot study, we demonstrate the feasibility of machine learning in differentiating between high and low-grade hydronephrosis in pediatric patients. MATERIALS AND METHODS: We retrospectively reviewed 592 images from 90 unique patients ages 0-8 years diagnosed with hydronephrosis at the University of Chicago's Pediatric Urology Clinic. The study included 74 high-grade hydronephrosis (145 images) and 227 low-grade hydronephrosis (447 images). Patients were excluded if they had less than 2 studies prior to surgical intervention or had structural abnormalities. We developed a radiomic-based artificial intelligence algorithm incorporating computerized texture analysis and machine learning (support-vector machine) to yield a predictor of hydronephrosis grade. RESULTS: Receiver operating characteristic analysis of the classifier output yielded an area under the curve value of 0.86 (95% CI 0.81-0.92) in the task of distinguishing between low and high-grade hydronephrosis using a five-fold cross-validation by kidney. In addition, a Mann-Kendall trend test between computer output and clinical hydronephrosis grade yielded a statistically significant upward trend (p<0.001). CONCLUSIONS: Our findings demonstrate the potential of machine learning in the differentiation between low and high-grade hydronephrosis. Further studies are warranted to validate our findings and their generalizability for use in clinical practice as a means to predict clinical outcomes and the resolution of hydronephrosis.


Asunto(s)
Inteligencia Artificial , Hidronefrosis , Humanos , Niño , Proyectos Piloto , Estudios Retrospectivos , Hidronefrosis/etiología , Aprendizaje Automático
17.
Nat Commun ; 14(1): 7772, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012164

RESUMEN

The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.


Asunto(s)
Pseudomonas aeruginosa , ARN , Pseudomonas aeruginosa/metabolismo , ARN/metabolismo , Biopelículas , ADN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
18.
Sci Rep ; 13(1): 18493, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898696

RESUMEN

Over-distraction has been shown to be a risk factor for cage subsidence and postoperative neck pain after anterior cervical discectomy and fusion (ACDF). Biomechanical studies have demonstrated increased adjacent segment intradiscal pressure after ACDF. The purpose of this study is to determine if over-distraction of the index disc has an effect on adjacent segment pathology. A consecutive series of 145 patients who received primary ACDF for cervical degenerative pathologies from January 2010 to December 2017 were retrospectively reviewed. The patients were divided into: (1) Over-distraction group (postoperative-preoperative index disc height ≥ 2 mm), and (2) No-distraction group (postoperative-preoperative index disc height < 2 mm). Outcome measures included radiographic parameters, Japanese Orthopaedic Association (JOA) score, and incidences of cage subsidence, radiological and clinical adjacent segment pathologies (RASP and CASP) were compared between the two groups preoperatively, postoperatively, and at the final follow-up. The two groups were comparable with respect to age, follow-up length, JOA score, incidence of CASP, and radiographic parameters. The Over-distraction group (83 patients; 115 levels) had smaller preoperative index disc height (4.5 vs. 5.2 mm, p < 0.001), but taller postoperative index disc height (7.7 vs. 6.6 mm, p < 0.001) than No-distraction group (62 patients; 90 levels) Furthermore, significantly higher incidences of cage subsidence (47% vs. 31%, p = 0.04) and RASP (any progression: 48% vs. 15%, p < 0.001; progress ≥ 2 grades: 25% vs. 7%, p = 0.001) were observed in the Over-distraction group. The multivariate analysis indicated that over-distraction and multilevel fusion were independent risk factors for RASP. There were no clinical outcome differences between the Over-distraction group and the No-distraction group in ACDF. Over-distraction of the index level of ≥ 2 mm should be avoided because it significantly increases the incidences of RASP and cage subsidence.


Asunto(s)
Discectomía , Fusión Vertebral , Humanos , Resultado del Tratamiento , Estudios de Seguimiento , Estudios Retrospectivos , Discectomía/efectos adversos , Discectomía/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía
19.
J Ultrasound Med ; 42(12): 2845-2858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37732901

RESUMEN

OBJECTIVES: The study aims to compare retrospectively three clinically applied methods for the diagnostic performance of cystic renal masses (CRMs) by contrast-enhanced ultrasound (CEUS) and contrast-enhanced computer tomography (CECT) with Bosniak classification system. METHODS: A total of 52 cases of Bosniak II-IV CRMs in 49 consecutive patients were diagnosed from January 2013 to July 2022 and their data were analyzed. All patients had been subjected to CEUS and CECT simultaneously. Pathological diagnoses and masses stability were used as standard references to determine whether lesions were malignant or benign. Then 49 CRMs only with pathologic results were classified into group 1 and 2. RESULTS: A total of 52 CRMs in 49 enrolled patients were classified into 8 category II, 16 category IIF, 15 category III, and 13 category IV by CEUS (EFSUMB 2020), 10 category II, 13 category IIF, 16 category III, and 13 category IV by CEUS (V2019), while 15 category II, 9 category IIF, 13 category III, and 15 category IV by CECT (V2019). Pathological results and masses stability longer than 5 years follow-up performed substantially for CEUS (EFSUMB 2020), CEUS (V2019), and CECT (V2019) (kappa values were 0.696, 0.735, and 0.696, respectively). Among 49 pathologic approving CRMs, wall/septation thickness ≥4 mm, wall/septation thickness, presence of enhancing nodule and the diameter were found to be statistically significant for malignancy. Twenty-two malignant masses were correctly diagnosed by CEUS (V2019), while 21 malignant masses were both correctly diagnosed by CEUS (EFSUMB 2020) and CECT (V2019), and 1 mass was misdiagnosed. CONCLUSIONS: Bosniak classification of EFSUMB 2020 version might be as accurate as version 2019 CEUS and version 2019 CECT in diagnosing CRMs, and CEUS is found to have an excellent safety profile in dealing with clinical works.


Asunto(s)
Enfermedades Renales Quísticas , Neoplasias Renales , Humanos , Estudios Retrospectivos , Riñón/patología , Tomografía Computarizada por Rayos X/métodos , Neoplasias Renales/diagnóstico por imagen , Ultrasonografía/métodos , Computadores , Enfermedades Renales Quísticas/diagnóstico por imagen , Medios de Contraste
20.
Int J Ophthalmol ; 16(9): 1465-1474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724283

RESUMEN

AIM: To evaluate the effects of LIN28A (human) on high glucose-induced retinal pigmented epithelium (RPE) cell injury and its possible mechanism. METHODS: Diabetic retinopathy model was generated following 48h of exposure to 30 mmol/L high glucose (HG) in ARPE-19 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot tested the expression of the corresponding genes and proteins. Cell viability as well as apoptosis was determined through cell counting kit-8 (CCK-8) and flow cytometry assays. Immunofluorescence assay was adopted to evaluate autophagy activity. Caspase 3 activity, oxidative stress markers, and cytokines were appraised adopting their commercial kits, respectively. Finally, ARPE-19 cells were preincubated with EX527, a Sirtuin 1 (SIRT1) inhibitor, prior to HG stimulation to validate the regulatory mechanism. RESULTS: LIN28A was downregulated in HG-challenged ARPE-19 cells. LIN28A overexpression greatly inhibited HG-induced ARPE-19 cell viability loss, apoptosis, oxidative damage as well as inflammatory response. Meanwhile, the repressed autophagy and SIRT1 in ARPE-19 cells challenged with HG were elevated after LIN28A overexpression. In addition, treatment of EX527 greatly inhibited the activated autophagy following LIN28A overexpression and partly abolished the protective role of LIN28A against HG-elicited apoptosis, oxidative damage as well as inflammation in ARPE-19 cells. CONCLUSION: LIN28A exerts a protective role against HG-elicited RPE oxidative damage, inflammation, as well as apoptosis via regulating SIRT1/autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...