Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(9): 3688-3697, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37903876

RESUMEN

Psychotic experiences (PEs) occur in 5-10% of the general population and are associated with exposure to childhood trauma and obstetric complications. However, the neurobiological mechanisms underlying these associations are unclear. Using the Avon Longitudinal Study of Parents and Children (ALSPAC), we studied 138 young people aged 20 with PEs (n = 49 suspected, n = 53 definite, n = 36 psychotic disorder) and 275 controls. Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk. PEs were associated with smaller left posterior cingulate (pFWE < 0.001, Z = 4.19) and thalamus volumes (pFWE = 0.006, Z = 3.91). Cumulative pre/perinatal risk was associated with smaller left subgenual cingulate volume (pFWE < 0.001, Z = 4.54). A significant interaction between PEs and cumulative pre/perinatal risk found larger striatum (pFWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus (pFWE = 0.002, Z = 4.79), specifically in those with definite PEs and psychotic disorder. Cumulative childhood trauma was associated with larger left dorsal striatum (pFWE = 0.002, Z = 3.65), right prefrontal cortex (pFWE < 0.001, Z = 4.63) and smaller left insula volume in all participants (pFWE = 0.03, Z = 3.60), and there was no interaction with PEs group. In summary, pre/peri-natal risk factors and childhood psychological trauma impact similar brain pathways, namely smaller insula and larger striatum volumes. The effect of pre/perinatal risk was greatest in those with more severe PEs, whereas effects of trauma were seen in all participants. In conclusion, environmental risk factors affect brain networks implicated in schizophrenia, which may increase an individual's propensity to develop later psychotic disorders.


Asunto(s)
Experiencias Adversas de la Infancia , Trastornos Psicóticos , Esquizofrenia , Niño , Humanos , Adolescente , Estudios Longitudinales , Imagen por Resonancia Magnética , Encéfalo
2.
Phys Rev Lett ; 129(7): 077201, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018685

RESUMEN

Entangled spin states are created by implanting muons into single-crystal LiY_{0.95}Ho_{0.05}F_{4} to form a cluster of correlated, dipole-coupled local magnetic moments. The resulting states have well-defined energy levels allowing experimental manipulation of the state populations by electromagnetic excitation. Experimental control of the evolution of the muon spin polarization is demonstrated through application of continuous, radio-frequency electromagnetic excitation fields. A semiclassical model of quantum, dipole-coupled spins interacting with a classical, oscillating magnetic field accounts for the muon spin evolution. On application of the excitation field, this model shows how changes in the state populations lead to the experimentally observed effects, thus enabling a spectroscopic probe of entangled spin states with muons.

3.
J Phys Chem C Nanomater Interfaces ; 126(17): 7529-7534, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558820

RESUMEN

Although muons are primarily regarded as a local spin probe, they can also access the charge state of an atom or molecule via quadrupolar level crossing resonance (QLCR) spectroscopy. We use Li+TCNQ- (TCNQ = 7,7,8,8-tetracyanoquinodimethane), a simple charge transfer salt, to test the potential of this technique in molecular systems by studying the interaction of a positive muon with the TCNQ nitrogen atoms. We show that both a positive muon and muonium are able to add to the nitrogen, leading to a singlet spin state for the addition molecule. This produces a characteristic three line QLCR spectrum, with the observed line positions and intensities determined by the principal values and orientation of the electric field gradient tensor at the nitrogen. Ab initio calculation of this field gradient and the resulting QLCR spectrum give good agreement with the experiment. A nonresonant background contribution to the relaxation rate also provides evidence for spin excitations rapidly diffusing along the TCNQ chains. These reflect mobile unpaired electrons introduced by muonium addition. It is thus shown that a single set of muon measurements can be sensitive to both spin and charge degrees of freedom in the same molecular material.

4.
Sci Rep ; 10(1): 16485, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999347

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 9813, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555354

RESUMEN

The GaV4S8-ySey (y = 0 to 8) family of materials have been synthesized in both polycrystalline and single crystal form, and their structural and magnetic properties thoroughly investigated. Each of these materials crystallizes in the F[Formula: see text][Formula: see text]3m space group at ambient temperature. However, in contrast to the end members GaV4S8 and GaV4Se8, that undergo a structural transition to the R3m space group at 42 and 41 K respectively, the solid solutions (y = 1 to 7) retain cubic symmetry down to 1.5 K. In zero applied field the end members of the family order ferromagnetically at 13 K (GaV4S8) and 18 K (GaV4Se8), while the intermediate compounds exhibit a spin-glass-like ground state. We demonstrate that the magnetic structure of GaV4S8 shows localization of spins on the V cations, indicating that a charge ordering mechanism drives the structural phase transition. We conclude that the observation of both structural and ferromagnetic transitions in the end members of the series in zero field is a prerequisite for the stabilization of a skyrmion phase, and discuss how the absence of these transitions in the y = 1 to 7 materials can be explained by their structural properties.

6.
Phys Chem Chem Phys ; 21(3): 1014-1018, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30574636

RESUMEN

The quasi-one-dimensional molecule-based Heisenberg antiferromagnet Cu(NO3)2(pyz)3 has an intrachain coupling J = 13.7(1) K () and exhibits a state of long-range magnetic order below TN = 0.105(1) K. The ratio of interchain to intrachain coupling is estimated to be |J'/J| = 3.3 × 10-3, demonstrating a high degree of isolation for the Cu chains.

7.
Sci Rep ; 8(1): 4745, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29549290

RESUMEN

Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.

8.
Phys Rev Lett ; 119(14): 147701, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29053322

RESUMEN

Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

9.
Phys Rev Lett ; 118(26): 267202, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707923

RESUMEN

We study by means of bulk and local probes the d-metal alloy Ni_{1-x}V_{x} close to the quantum critical concentration, x_{c}≈11.6%, where the ferromagnetic transition temperature vanishes. The magnetization-field curve in the ferromagnetic phase takes an anomalous power-law form with a nonuniversal exponent that is strongly x dependent and mirrors the behavior in the paramagnetic phase. Muon spin rotation experiments demonstrate inhomogeneous magnetic order and indicate the presence of dynamic fluctuating magnetic clusters. These results provide strong evidence for a quantum Griffiths phase on the ferromagnetic side of the quantum phase transition.

10.
Chem Commun (Camb) ; 52(85): 12653-12656, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27713934

RESUMEN

The title compounds are bimetallic MOFs containing [Cu(pyz)2]2+ square lattices linked by MF6n- octahedra. In each, only the Cu2+ spins exhibit long-range magnetic order below 3.5 K (M = V4+) and 2.6 K (M = Ga3+). The V4+ spins remain disordered down to 0.5 K.

11.
Inorg Chem ; 55(17): 8951-60, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27505146

RESUMEN

Structural characterization by neutron diffraction, supported by magnetic, SHG, and µ(+)SR data, reveals that the n = 2 Ruddlesden-Popper phase La2SrCr2O7 adopts a highly unusual structural configuration in which the cooperative rotations of the CrO6 octahedra are out of phase in all three Cartesian directions (ΦΦΦz/ΦΦΦz; a(-)a(-)c(-)/a(-)a(-)c(-)) as described in space group A2/a. First-principles DFT calculations indicate that this unusual structural arrangement can be attributed to coupling between the La/Sr A-site distribution and the rotations of the CrO6 units, which combine to relieve the local deformations of the chromium-oxygen octahedra. This coupling suggests new chemical "handles" by which the rotational distortions or A-site cation order of Ruddlesden-Popper phases can be directed to optimize physical behavior. Low-temperature neutron diffraction data and µ(+)SR data indicate La2SrCr2O7 adopts a G-type antiferromagnetically ordered state below TN ∼ 260 K.

12.
Inorg Chem ; 55(6): 3169-74, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26959515

RESUMEN

The low-temperature fluorination of the n = 2 Ruddlesden-Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr(4+)O6 units. Typically materials containing networks of octahedrally coordinated Cr(4+) centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and µ(+)SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure-property relations of this phase and other Cr(4+) oxide phases are discussed.

13.
Inorg Chem ; 55(7): 3515-29, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27002487

RESUMEN

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.

14.
Chemistry ; 22(5): 1779-88, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26748964

RESUMEN

The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (µSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that µSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

15.
J Am Chem Soc ; 138(7): 2280-91, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26811927

RESUMEN

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.

16.
Phys Rev Lett ; 112(14): 147202, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766007

RESUMEN

Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108 K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67 K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at T≈5 K. Ab initio calculations indicate that the effective exchange coupling between cobalt and osmium sites is rather weak, so that cobalt and osmium sublattices exhibit different ground states and spin dynamics, making Sr2CoOsO6 distinct from previously reported double-perovskite compounds.

17.
Nat Mater ; 12(1): 15-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23104153

RESUMEN

The discovery of high-temperature superconductivity in a layered iron arsenide has led to an intensive search to optimize the superconducting properties of iron-based superconductors by changing the chemical composition of the spacer layer between adjacent anionic iron arsenide layers. Superconductivity has been found in iron arsenides with cationic spacer layers consisting of metal ions (for example, Li(+), Na(+), K(+), Ba(2+)) or PbO- or perovskite-type oxide layers, and also in Fe(1.01)Se (ref. 8) with neutral layers similar in structure to those found in the iron arsenides and no spacer layer. Here we demonstrate the synthesis of Li(x)(NH(2))(y)(NH(3))(1-y)Fe(2)Se(2) (x~0.6; y~0.2), with lithium ions, lithium amide and ammonia acting as the spacer layer between FeSe layers, which exhibits superconductivity at 43(1) K, higher than in any FeSe-derived compound reported so far. We have determined the crystal structure using neutron powder diffraction and used magnetometry and muon-spin rotation data to determine the superconducting properties. This new synthetic route opens up the possibility of further exploitation of related molecular intercalations in this and other systems to greatly optimize the superconducting properties in this family.

18.
Chem Commun (Camb) ; 49(5): 499-501, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23203152

RESUMEN

CuF(2)(H(2)O)(2)(3-chloropyridine) possesses a five-coordinate Cu(2+) center with a slightly distorted trigonal bypyramidal coordination geometry. Strong intermolecular F···H-O hydrogen bonds enable the formation of 2D layers and provide the primary magnetic exchange path that leads to the stabilization of long-range antiferromagnetic (AFM) order below T(N) = 2.1 K.

19.
Inorg Chem ; 51(14): 7520-8, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22746404

RESUMEN

[Ni(HF(2))(3-Clpy)(4)]BF(4) (py = pyridine) is a simple one-dimensional (1D) coordination polymer composed of compressed NiN(4)F(2) octahedra that form chains with bridging HF(2)(-) ligands. In spite of significant distortion of the HF(2)(-) bridge, a quasi-1D antiferromagnetic (AFM) behavior was observed with J(FHF) = 4.86 K.

20.
Dalton Trans ; 41(24): 7235-43, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22569844

RESUMEN

A tetragonal polymorph of [Ni(HF(2))(pyz)(2)]PF(6) (designated ß) is isomorphic to its SbF(6)-congener at 295 K and features linear Ni-FHF-Ni pillars. Enhancements in the spin exchange (J(FHF) = 7.7 K), Néel temperature (T(N) = 7 K), and critical field (B(c) = 24 T) were found relative to monoclinic α-PF(6). DFT reveals that the HF(2)(-) bridges are significantly better mediators of magnetic exchange than pyz (J(pyz)), where J(FHF) ≈ 3J(pyz), thus leading to quasi-1D behavior. Spin density resides on all atoms of the HF(2)(-) bridge whereas N-donor atoms of the pyz ring bear most of the density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...