Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4891, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580322

RESUMEN

Social behaviors are diverse in nature, but it is unclear how conserved genes, brain regions, and cell populations generate this diversity. Here we investigate bower-building, a recently-evolved social behavior in cichlid fishes. We use single nucleus RNA-sequencing in 38 individuals to show signatures of recent behavior in specific neuronal populations, and building-associated rebalancing of neuronal proportions in the putative homolog of the hippocampal formation. Using comparative genomics across 27 species, we trace bower-associated genome evolution to a subpopulation of glia lining the dorsal telencephalon. We show evidence that building-associated neural activity and a departure from quiescence in this glial subpopulation together regulate hippocampal-like neuronal rebalancing. Our work links behavior-associated genomic variation to specific brain cell types and their functions, and suggests a social behavior has evolved through changes in glia.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Conducta Social , Genoma , Genómica , Secuencia de Bases
2.
Sci Rep ; 10(1): 20573, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239639

RESUMEN

In the wild, behaviors are often expressed over long time periods in complex and dynamic environments, and many behaviors include direct interaction with the environment itself. However, measuring behavior in naturalistic settings is difficult, and this has limited progress in understanding the mechanisms underlying many naturally evolved behaviors that are critical for survival and reproduction. Here we describe an automated system for measuring long-term bower construction behaviors in Lake Malawi cichlid fishes, in which males use their mouths to sculpt sand into large species-specific structures for courtship and mating. We integrate two orthogonal methods, depth sensing and action recognition, to simultaneously track the developing bower structure and the thousands of individual sand manipulation behaviors performed throughout construction. By registering these two data streams, we show that behaviors can be topographically mapped onto a dynamic 3D sand surface through time. The system runs reliably in multiple species, across many aquariums simultaneously, and for up to weeks at a time. Using this system, we show strong differences in construction behavior and bower form that reflect species differences in nature, and we gain new insights into spatial, temporal, social dimensions of bower construction, feeding, and quivering behaviors. Taken together, our work highlights how low-cost tools can automatically quantify behavior in naturalistic and social environments over long timescales in the lab.


Asunto(s)
Cíclidos/metabolismo , Recolección de Datos/métodos , Animales , Conducta Animal/clasificación , Conducta Animal/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Lagos , Malaui , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducción/fisiología , Conducta Sexual Animal/fisiología
3.
iScience ; 23(10): 101591, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083750

RESUMEN

Many behaviors that are critical for survival and reproduction are expressed over extended time periods. The ability to inexpensively record and store large volumes of video data creates new opportunities to understand the biological basis of these behaviors and simultaneously creates a need for tools that can automatically quantify behaviors from large video datasets. Here, we demonstrate that 3D Residual Networks can be used to classify an array of complex behaviors in Lake Malawi cichlid fishes. We first apply pixel-based hidden Markov modeling combined with density-based spatiotemporal clustering to identify sand disturbance events. After this, a 3D ResNet, trained on 11,000 manually annotated video clips, accurately (>76%) classifies the sand disturbance events into 10 fish behavior categories, distinguishing between spitting, scooping, fin swipes, and spawning. Furthermore, animal intent can be determined from these clips, as spits and scoops performed during bower construction are classified independently from those during feeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...