Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 88(1): 26-34, 2004 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-15384058

RESUMEN

The chromatographic purification of biological macromolecules requires a novel approach to overcome some of the pore size limitations of commercially available resins. Membrane adsorbers offer the potential for better resolution as well as productivity. Sharp peaks are gained by the rapid exchange rate with the adsorbing membranes associated with the convective flow path, in contrast to the pore diffusion requirement for resin exchange. The resolution advantage is preserved even when the very short bed heights of membranes are exploited for the purpose of exceptionally high flow rates and productivity. Breakthrough experiments were used to assess the membrane dynamic loading capacities of flexible macromolecules using supercoiled (SC) DNA as a model system. In contrast to reports for smaller biomolecules such as proteins and antibodies, the dynamic capacity for DNA was found to be highly dependent on flow rates and concentrations. Increasing flow rates induced DNA elongation, which increased the surface coverage and, in turn, lowered the capacity. Increasing concentrations beyond C*, the overlap concentration, led to exclusion-volume interactions, which reduced the size of DNA and increased the membrane adsorber capacity. In the chromatographic mode, membranes with a strongly positive charge were able to resolve various isoforms of DNA, surpassing the capabilities of analogous chromatographic resins. In this study, we found that the convective-flow-induced-structural behavior of DNA is responsible for the resolution in separation.


Asunto(s)
Cromatografía/métodos , ADN/análisis , Sustancias Macromoleculares , Humanos , Membranas , Conformación Molecular
2.
Artículo en Inglés | MEDLINE | ID: mdl-15081930

RESUMEN

A fast and sensitive HPLC method using fluorescence detection is developed to quantitate 1-pyrenyldiazomethane (PDAM) derivatized fatty acids derived from the lipid components of both the capsular meningococcal polysaccharide and other impurities such as endotoxin in various meningococcal vaccine samples. The HPLC method is capable of well resolving 13 relevant fatty acids within 40min by using a multi-stage acetonitrile/water gradient. Endotoxin values measured by HPLC well correlated with results from the standard Limulus amebocyte lysate (LAL) assay. Furthermore, the fatty acid profiles of various process intermediate samples as well as final purified polysaccharide products were determined to better understand and characterize the purification process.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lípidos/análisis , Neisseria meningitidis/química , Polisacáridos Bacterianos/química , Sensibilidad y Especificidad , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...