Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 87(1): 122-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19571801

RESUMEN

Parasitic protozoa cause devastating diseases across large regions of the globe, but a lack of economic incentives has resulted in the limited development of drugs against these "neglected diseases." Transporters expressed in the plasma membranes of these parasites offer potential for the development of new drugs. These permeases could be employed in two distinct strategies for drug development: (i) targeting selective delivery of drugs to the parasite and (ii) developing drugs that inhibit essential parasite permeases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Proteínas de Transporte de Membrana/administración & dosificación , Proteínas de Transporte de Membrana/metabolismo , Enfermedades Parasitarias/tratamiento farmacológico , Enfermedades Parasitarias/metabolismo , Animales , Antiparasitarios/administración & dosificación , Antiparasitarios/metabolismo , Humanos , Enfermedades Parasitarias/parasitología
2.
Biochem Pharmacol ; 62(2): 149-55, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11389872

RESUMEN

Nucleoside transporters play central roles in the biochemistry of parasitic protozoa such as Leishmania and African trypanosomes, because these parasites cannot synthesize purines de novo and are absolutely reliant upon purine salvage from their hosts. Furthermore, nucleoside transporters are important to the pharmacology of these significant human pathogens, because they mediate the uptake of purine analogs, as well as some non-purine drugs, that are selectively cytotoxic to the parasites. Recent advances in molecular biology and genomics have allowed the cloning and functional expression of several nucleoside transporter genes from Leishmania donovani and Trypanosoma brucei, providing molecular reagents for a detailed functional examination of these permeases and their role in the delivery of nutrients and drugs to the parasites. Furthermore, the molecular basis of drug-resistant mutants that are deficient in nucleoside transport functions can now be fathomed.


Asunto(s)
Proteínas Portadoras/genética , Leishmania donovani/genética , Proteínas de la Membrana/genética , Trypanosoma brucei brucei/genética , África , Animales , Clonación Molecular , Proteínas de Transporte de Nucleósidos , Nucleósidos/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 98(11): 6092-7, 2001 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-11353834

RESUMEN

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine K(m) values, the severe impairment in transport resulted from drastically ( approximately 20-fold) reduced V(max) values. Because these transporters were correctly targeted to the plasma membrane, the reduction in V(max) apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1


Asunto(s)
Proteínas Portadoras/genética , Genes Protozoarios , Leishmania donovani/genética , Proteínas de la Membrana/genética , Mutación Puntual , Proteínas Protozoarias/genética , Tubercidina/farmacología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Clonación Molecular , Resistencia a Medicamentos/genética , Proteínas Fluorescentes Verdes , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleósidos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/fisiología , Análisis de Secuencia de ADN , Fracciones Subcelulares
4.
Mol Biochem Parasitol ; 115(1): 1-17, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11377735

RESUMEN

The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address.


Asunto(s)
Flagelos , Leishmania/fisiología , Trypanosoma/fisiología , Animales , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Endocitosis , Flagelos/fisiología , Flagelos/ultraestructura , Leishmania/ultraestructura , Proteínas Protozoarias/metabolismo , Trypanosoma/ultraestructura
5.
Trends Parasitol ; 17(3): 142-5, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11286799

RESUMEN

Protozoan parasites are incapable of synthesizing purine nucleotides de novo and so must salvage preformed purines from their hosts. This process of purine acquisition is initiated by the translocation of preformed host purines across parasite or host membranes. Here, we report upon the identification and isolation of DNAs encoding parasite nucleoside transporters and the functional characterization of these proteins in various expression systems. These potential approaches provide a powerful approach for a thorough molecular and biochemical dissection of nucleoside transport in protozoan parasites.


Asunto(s)
Proteínas Portadoras/metabolismo , Eucariontes/metabolismo , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/metabolismo , Nucleósidos de Purina/metabolismo , Animales , Proteínas Portadoras/genética , Humanos , Proteínas Protozoarias/genética
6.
Curr Opin Microbiol ; 3(4): 417-21, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10972504

RESUMEN

The ability to clone and functionally express genes encoding membrane transporters in Leishmania and related parasitic protozoa has illuminated the processes whereby these parasites acquire nutrients from their hosts. It is now possible to probe the physiological functions of these permeases and investigate their role in drug delivery and resistance.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Leishmania/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Animales , Membrana Celular/metabolismo , Genes Protozoarios , Leishmania/genética , Leishmania/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
J Biol Chem ; 275(27): 20935-41, 2000 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-10783393

RESUMEN

Purine transport is an indispensable nutritional function for protozoan parasites, since they are incapable of purine biosynthesis and must, therefore, acquire purines from the host milieu. Exploiting a mutant cell line (FBD5) of Leishmania donovani deficient in inosine and guanosine transport activity, the gene encoding this transporter (LdNT2) has been cloned by functional rescue of the mutant phenotype. LdNT2 encodes a polypeptide of 499 amino acids that shows substantial homology to other members of the equilibrative nucleoside transporter family. Molecular analysis revealed that LdNT2 is present as a single gene copy within the leishmanial genome and encodes a single transcript of 3 kilobase pairs. Transfection of FBD5 parasites with LdNT2 re-established their ability to take up inosine and guanosine with a concurrent restoration of sensitivity to the inosine analog formycin B. Kinetic analyses reveal that LdNT2 is highly specific for inosine (K(m) = 0.3 micrometer) and guanosine (K(m) = 1.7 micrometer) and does not recognize other naturally occurring nucleosides. Expression of LdNT2 cRNA in Xenopus oocytes significantly augmented their ability to take up inosine and guanosine, establishing that LdNT2 by itself suffices to mediate nucleoside transport. These results authenticate genetically and biochemically that LdNT2 is a novel nucleoside transporter with an unusual and strict specificity for inosine and guanosine.


Asunto(s)
Proteínas Portadoras/genética , Guanosina/metabolismo , Inosina/metabolismo , Leishmania donovani/genética , Proteínas de la Membrana/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico , Proteínas Portadoras/química , Clonación Molecular , Formicinas/farmacología , Cinética , Leishmania donovani/metabolismo , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleósidos , Oocitos/metabolismo , Proteínas Protozoarias/química , Alineación de Secuencia , Especificidad por Sustrato , Transfección , Xenopus
8.
J Biol Chem ; 275(14): 10683-91, 2000 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-10744765

RESUMEN

Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K(m) = 13.2 microM) and D-inosine (K(m) = 253 microM). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K(m) > 500 microM). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation.


Asunto(s)
Proteínas Portadoras/genética , Mapeo Cromosómico , Genes Protozoarios , Proteínas de Transporte de Membrana , Plasmodium falciparum/genética , Proteínas Protozoarias , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Bases de Datos Factuales , Eritrocitos/parasitología , Femenino , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Nucleósidos/metabolismo , Oocitos/fisiología , Plasmodium falciparum/fisiología , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus laevis
9.
J Biol Chem ; 275(8): 5687-93, 2000 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-10681553

RESUMEN

The protozoan Leishmania donovani has a myo-inositol/proton symporter (MIT) that is a member of a large sugar transporter superfamily. Active transport by MIT is driven by the proton electrochemical gradient across the parasite membrane, and MIT is a prototype for understanding the function of an active transporter in lower eukaryotes. MIT contains two duplicated 6- or 7-amino acid motifs within cytoplasmic loops, which are highly conserved among 50 members of the sugar transporter superfamily and are designated A(1), A(2) ((V)(D/E)(R/K)PhiGR(R/K)), and B(1) (PESPRPhiL), B(2) (VPETKG). In particular, the three acidic residues within these motifs, Glu(187)(B(1)), Asp(300)(A(2)), and Glu(429)(B(2)) in MIT, are highly conserved with 96, 78, and 96% amino acid identity within the analyzed members of this transporter superfamily ranging from bacteria, archaea, and fungi to plants and the animal kingdom. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopus oocytes and overexpression in Leishmania transfectants to investigate the significance of these three acidic residues in the B(1), A(2), and B(2) motifs. Alteration to the uncharged amides greatly reduced MIT transport function to 23% (E187Q), 1.4% (D300N), and 3% (E429Q) of wild-type activity, respectively, by affecting V(max) but not substrate affinity. Conservative mutations that retained the charge revealed a less pronounced effect on inositol transport with 39% (E187D), 16% (D300E) and 20% (E429D) remaining transport activity. Immunofluorescence microscopy of oocyte cryosections confirmed that MIT mutants were expressed on the oocyte surface in similar quantity to MIT wild type. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy) phenylhydrazone and dinitrophenol inhibited inositol transport by 50-70% in the wild type as well as in E187Q, D300N, and E429Q, despite their reduced transport activities, suggesting that transport in these mutants is still proton-coupled. Furthermore, temperature-dependent uptake studies showed an increased Arrhenius activation energy for the B(1)-E187Q and the B(2)-E429Q mutants, which supports the idea of an impaired transporter cycle in these mutants. We conclude that the conserved acidic residues Glu(187), Asp(300), and Glu(429) are critical for transport function of MIT.


Asunto(s)
Citoplasma/química , Hidrógeno/metabolismo , Inositol/metabolismo , Leishmania donovani/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Secuencia Conservada , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Inositol/farmacocinética , Cinética , Leishmania donovani/genética , Proteínas de la Membrana/fisiología , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Estructura Secundaria de Proteína , Proteínas Protozoarias/fisiología , ARN Complementario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Simportadores , Temperatura , Transfección , Xenopus
10.
Mol Biochem Parasitol ; 104(1): 121-30, 1999 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-10589986

RESUMEN

Leishmania flagellates undergo a digenetic life cycle in the gut of the sandfly insect vector and in macrophage phagolysosomes of the mammalian host. This involves vast changes of the environment to which the parasite has to adapt, including temperature, pH and concentration of nutrients between different types of meals of the insect vector or within the enclosed intracellular environment of the phagolysosome. The regulation of transporters for important organic substrates in Leishmania donovani, Leishmania mexicana and Leishmania enriettii has been investigated. A pronounced upregulation of inositol (25-fold), adenosine (11-fold) or glucose (5-fold) uptake activities was found when cells were depleted of the respective substrates during culture. Inositol-depleted cells showed a half-maximal uptake rate at nanomolar inositol concentration. Depletion of inositol only affected inositol uptake but did not affect uptake of glucose analog or proline in control experiments, indicating the specificity of the mechanism(s) underlying transport regulation. Adenosine-depleted cells showed an approximately 10-fold increase in both adenosine and uridine uptake, both mediated by the L. donovani nucleoside transporter 1 (LdNT1), but no change in guanosine uptake, which is mediated by the L. donovani nucleoside transporter 2 (LdNT2). These results suggest that extracellular adenosine concentration specifically regulates LdNT1 transport activity and does not affect LdNT2. The data imply that upregulation of transport activities by substrate depletion is a general phenomenon in protozoan flagellates, which is in remarkable contrast to bacteria where upregulation typically follows an increase of extracellular organic substrate. Hence, the parasites can maximize the uptake of important nutrients from the host even under limiting conditions, whereas bacteria often have dormant stages (spores) to overcome unfavorable environmental conditions or are heterotrophic for organic substrates.


Asunto(s)
Adenosina/metabolismo , Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Inositol/metabolismo , Leishmania/metabolismo , Animales , Transporte Biológico , Medios de Cultivo , Leishmania donovani/metabolismo , Leishmania mexicana/metabolismo , Regulación hacia Arriba
11.
J Biol Chem ; 274(41): 29543-8, 1999 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-10506220

RESUMEN

The surface membranes of eukaryotic flagella and cilia are contiguous with the plasma membrane. Despite the absence of obvious physical structures that could form a barrier between the two membrane domains, the lipid and protein compositions of flagella and cilia are distinct from the rest of the cell surface membrane. We have exploited a flagellar glucose transporter from the parasitic protozoan Leishmania enriettii as a model system to characterize the first targeting motif for a flagellar membrane protein in any eukaryotic organism. In this study, we demonstrate that the flagellar membrane-targeting motif is recognized by several species of Leishmania. Previously, we demonstrated that the 130 amino acid NH(2)-terminal cytoplasmic domain of isoform 1 glucose transporter was sufficient to target a nonflagellar integral membrane protein into the flagellar membrane. We have now determined that an essential flagellar targeting signal is located between amino acids 20 and 35 of the NH(2)-terminal domain. We have further analyzed the role of specific amino acids in this region by alanine replacement mutagenesis and determined that single amino acid substitutions did not abrogate targeting to the flagellar membrane. However, individual mutations located within a cluster of five contiguous amino acids, RTGTT, conferred differences in the degree of targeting to the flagellar membrane and the flagellar pocket, implying a role for these residues in the mechanism of flagellar trafficking.


Asunto(s)
Flagelos/química , Leishmania enriettii/metabolismo , Proteínas de la Membrana/química , Proteínas Protozoarias , Animales , Técnica del Anticuerpo Fluorescente , Proteínas de la Membrana/genética , Microscopía Confocal , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis , Proteínas Recombinantes de Fusión , Transfección
12.
J Biol Chem ; 274(42): 30244-9, 1999 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-10514517

RESUMEN

Nucleoside transporters are likely to play a central role in the biochemistry of the parasite Trypanosoma brucei, since these protozoa are unable to synthesize purines de novo and must salvage them from their hosts. Furthermore, nucleoside transporters have been implicated in the uptake of antiparasitic and experimental drugs in these and other parasites. We have cloned the gene for a T. brucei nucleoside transporter, TbNT2, and shown that this permease is related in sequence to mammalian equilibrative nucleoside transporters. Expression of the TbNT2 gene in Xenopus oocytes reveals that the permease transports adenosine, inosine, and guanosine and hence has the substrate specificity of the P1 type nucleoside transporters that have been previously characterized by uptake assays in intact parasites. TbNT2 mRNA is expressed in bloodstream form (mammalian host stage) parasites but not in procyclic form (insect stage) parasites, indicating that the gene is developmentally regulated during the parasite life cycle. Genomic Southern blots suggest that there are multiple genes related in sequence to TbNT2, implying the existence of a family of nucleoside transporter genes in these parasites.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Transporte de Membrana , Proteínas Nucleares/genética , Proteínas Protozoarias , Trypanosoma brucei brucei/genética , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Complementario , Datos de Secuencia Molecular , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Xenopus
13.
J Biol Chem ; 273(44): 29118-26, 1998 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-9786920

RESUMEN

We have studied the structure and expression of glucose transporter genes in the parasitic protozoan Leishmania mexicana. Three distinct glucose transporter isoforms, LmGT1, LmGT2, and LmGT3, are encoded by single copy genes that are clustered together at a single locus. Quantitation of Northern blots reveals that LmGT2 mRNA is present at approximately 15-fold higher level in promastigotes, the insect stage of the parasite life cycle, compared with amastigotes, the intracellular stage of the life cycle that lives within the mammalian host. In contrast, LmGT1 and LmGT3 mRNAs are expressed at similar levels in both life cycle stages. Transcription of the LmGT genes in promastigotes and axenically cultured amastigotes occurs at similar levels, as measured by nuclear run-on transcription. Consequently, the approximately 15-fold up-regulation of LmGT2 mRNA levels in promastigotes compared with amastigotes must be controlled at the post-transcriptional level. Measurement of LmGT2 RNA decay in promastigotes and axenic amastigotes treated with actinomycin D suggests that differential mRNA stability may play a role in regulating glucose transporter mRNA levels in the two life cycle stages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Leishmania mexicana/genética , Proteínas de Transporte de Monosacáridos/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Protozoario , Leishmania mexicana/crecimiento & desarrollo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/química , ARN Mensajero/genética , Homología de Secuencia de Aminoácido
14.
Proc Natl Acad Sci U S A ; 95(17): 9873-8, 1998 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-9707568

RESUMEN

All parasitic protozoa studied to date are incapable of purine biosynthesis and must therefore salvage purine nucleobases or nucleosides from their hosts. This salvage process is initiated by purine transporters on the parasite cell surface. We have used a mutant line (TUBA5) of Leishmania donovani that is deficient in adenosine/pyrimidine nucleoside transport activity (LdNT1) to clone genes encoding these nucleoside transporters by functional rescue. Two such genes, LdNT1.1 and LdNT1.2, have been sequenced and shown to encode deduced polypeptides with significant sequence identity to the human facilitative nucleoside transporter hENT1. Hydrophobicity analysis of the LdNT1.1 and LdNT1.2 proteins predicted 11 transmembrane domains. Transfection of the adenosine/pyrimidine nucleoside transport-deficient TUBA5 parasites with vectors containing the LdNT1.1 and LdNT1.2 genes confers sensitivity to the cytotoxic adenosine analog tubercidin and concurrently restores the ability of this mutant line to take up [3H]adenosine and [3H]uridine. Moreover, expression of the LdNT1.2 ORF in Xenopus oocytes significantly increases their ability to take up [3H]adenosine, confirming that this single protein is sufficient to mediate nucleoside transport. These results establish genetically and biochemically that both LdNT1 genes encode functional adenosine/pyrimidine nucleoside transporters.


Asunto(s)
Proteínas Portadoras/genética , Genes Protozoarios , Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteínas de Transporte de Nucleósidos , Proteínas Protozoarias/genética , Nucleósidos de Purina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Clonación Molecular , Resistencia a Medicamentos/genética , Tranportador Equilibrativo 1 de Nucleósido , Femenino , Expresión Génica , Humanos , Leishmania donovani/efectos de los fármacos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Fenotipo , Proteínas Protozoarias/metabolismo , Mapeo Restrictivo , Homología de Secuencia de Aminoácido , Tubercidina/farmacología , Xenopus
15.
J Biol Chem ; 272(39): 24210-5, 1997 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-9305873

RESUMEN

The protozoan flagellate Leishmania donovani has an active myo-inositol/proton symporter (MIT), which is driven by a proton gradient across the parasite membrane. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopus oocytes and overexpression in Leishmania transfectants to investigate the significance of acidic transmembrane residues for proton relay and inositol transport. MIT has only three charged amino acids within predicted transmembrane domains. Two of these residues, Asp19 (TM1) and Glu121 (TM4), appeared to be critical for transport function of MIT, with a reduction of inositol transport to about 2% of wild-type activity when mutated to the uncharged amides D19N or E121Q and 20% (D19E) or 4% (E121D) of wild-type activity for the conservative mutations that retained the charge. Immunofluorescence microscopy of oocyte cryosections showed that MIT mutants were expressed on the oocyte surface at a similar level as MIT wild type, confirming that these mutations affect transport function and do not prevent trafficking of the transporter to the plasma membrane. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone and dinitrophenol inhibited inositol transport by 50-70% in the wild-type as well as in E121Q, despite its reduced transport activity. The mutant D19N, however, was stimulated about 4-fold by either protonophore and 2-fold by cyanide or increase of pH 7.5 to 8.5 but inhibited at pH 6.5. The conservative mutant D19E, in contrast, showed an inhibition profile similar to MIT wild type. We conclude that Asp19 and Glu121 are critical for myo-inositol transport, while the negatively charged carboxylate at Asp19 may be important for proton coupling of MIT.


Asunto(s)
Ácido Aspártico/metabolismo , Proteínas Portadoras/metabolismo , Ácido Glutámico/metabolismo , Hidrógeno/metabolismo , Inositol/metabolismo , Leishmania donovani/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
16.
J Cell Biol ; 139(7): 1775-83, 1997 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-9412471

RESUMEN

The major glucose transporter of the parasitic protozoan Leishmania enriettii exists in two isoforms, one of which (iso-1) localizes to the flagellar membrane, while the other (iso-2) localizes to the plasma membrane of the cell body, the pellicular membrane. These two isoforms differ only in their cytosolic NH2-terminal domains. Using immunoblots and immunofluorescence microscopy of detergent-extracted cytoskeletons, we have demonstrated that iso-2 associates with the microtubular cytoskeleton that underlies the cell body membrane, whereas the flagellar membrane isoform iso-1 does not associate with the cytoskeleton. Deletion mutants that remove the first 25 or more amino acids from iso-1 are retargeted from the flagellum to the pellicular membrane, suggesting that these deletions remove a signal required for flagellar targeting. Unlike the full-length iso-1 protein, these deletion mutants associate with the cytoskeleton. Our results suggest that cytoskeletal binding serves as an anchor to localize the iso-2 transporter within the pellicular membrane, and that the flagellar targeting signal of iso-1 diverts this transporter into the flagellar membrane and away from the pellicular microtubules.


Asunto(s)
Citoesqueleto/metabolismo , Leishmania enriettii/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Animales , Sitios de Unión , Fraccionamiento Celular , Detergentes/farmacología , Epítopos de Linfocito B , Flagelos/metabolismo , Transportador de Glucosa de Tipo 2 , Leishmania enriettii/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Octoxinol/farmacología , Señales de Clasificación de Proteína/metabolismo , Ratas , Solubilidad
17.
J Biol Chem ; 271(25): 14937-43, 1996 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-8663013

RESUMEN

Voltage clamp recording was used to measure steady-state and presteady-state currents mediated by a myo-inositol transporter cloned from Leishmania donovani and expressed in Xenopus oocytes. Application of myo-inositol resulted in inward currents, which did not require external sodium and which were increased by increasing the extracellular proton concentration and by membrane hyperpolarization. Alkalinization of the extracellular space occurred concomitantly with myo-inositol influx. Correlation of membrane currents with radiolabeled myo-inositol flux revealed that one positive charge is translocated with each molecule of myo-inositol, consistent with cotransport of one proton. The transport concentration dependence on both species suggested ordered binding of a proton followed by a molecule of myo-inositol. In the absence of myo-inositol, a voltage-dependent capacitance was observed that correlated with the transporter expression level. This charge movement obeyed a Boltzmann function, which was used to estimate a turnover of 0.70 +/- 0.06 s-1 at -60 mV. The pH and voltage dependence of the charge movements were simulated with a model involving alternating access of internal and external protons to sites within an occluded pore.


Asunto(s)
Proteínas Portadoras/metabolismo , Inositol/metabolismo , Leishmania donovani/metabolismo , Oocitos/fisiología , Animales , Transporte Biológico , Proteínas Portadoras/biosíntesis , Femenino , Concentración de Iones de Hidrógeno , Inositol/farmacología , Cinética , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Temperatura , Xenopus laevis
18.
Mol Cell Biol ; 15(10): 5508-15, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7565702

RESUMEN

The vast majority of surface molecules in such kinetoplastid protozoa as members of the genus Leishmania contain inositol and are either glycosyl inositol phospholipids or glycoproteins that are tethered to the external surface of the plasma membrane by glycosylphosphatidylinositol anchors. We have shown that the biosynthetic precursor for these abundant glycolipids, myo-inositol, is translocated across the parasite plasma membrane by a specific transporter that is structurally related to mammalian facilitative glucose transporters. This myo-inositol transporter has been expressed and characterized in Xenopus laevis oocytes. Two-electrode voltage clamp experiments demonstrate that this protein is a sodium-independent electrogenic symporter that appears to utilize a proton gradient to concentrate myo-inositol within the cell. Immunolocalization experiments with a transporter-specific polyclonal antibody reveal the presence of this protein in the parasite plasma membrane.


Asunto(s)
Proteínas Portadoras/biosíntesis , Inositol/metabolismo , Leishmania donovani/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas Protozoarias/biosíntesis , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Membrana Celular/química , Genes Protozoarios/genética , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Oocitos , Protones , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Alineación de Secuencia , Simportadores , Xenopus laevis
19.
Biochemistry ; 34(37): 11814-21, 1995 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-7547915

RESUMEN

We have used expression in Xenopus oocytes to characterize a new hexose transporter from the parasitic protozoan Leishmania donovani. This transporter utilizes the hexoses glucose, fructose, and mannose as substrates. A substrate saturation curve for 2-deoxy-D-glucose reveals a very high Km, estimated to be approximately 150 mM. Immunolocalization of the protein with an antibody directed against the COOH terminus indicates that the transporter is present primarily in the parasite plasma membrane but is not detectable in the flagellar membrane. Since this protein is expressed in the insect stage promastigotes but not in the intracellular amastigotes, it may be specialized to function following an insect sugar meal when the concentrations of sugars surrounding the parasite are high.


Asunto(s)
Leishmania donovani/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Carbohidratos/farmacología , Desoxiglucosa/metabolismo , Femenino , Expresión Génica , Genes Protozoarios , Inmunohistoquímica , Técnicas In Vitro , Cinética , Leishmania donovani/genética , Leishmania donovani/crecimiento & desarrollo , Microscopía Inmunoelectrónica , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Nucleósidos/farmacología , Oocitos/metabolismo , Fracciones Subcelulares/metabolismo , Xenopus
20.
J Biol Chem ; 270(29): 17551-8, 1995 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-7615561

RESUMEN

Leishmania parasites are exposed to pronounced changes in their environment during their life cycle as they migrate from the sandfly midgut to the insect proboscis and then into the phagolysosomes of the vertebrate macrophages. The developmental transformations that produce each life cycle stage of the parasite may be signaled in part by binding of environmental ligands to receptors which mediate transduction of extracellular signals. We have identified a family of five clustered genes in Leishmania donovani which may encode signal transduction receptors. The coding regions of two of these genes, designated rac-A and rac-B, have been sequenced and shown to code for proteins with an NH2-terminal hydrophilic domain, an intervening putative transmembrane segment, and a COOH-terminal domain that has high sequence identity to the catalytic domain from adenylate cyclases in other eukaryotes. We have expressed the receptor-adenylate cyclase protein (RAC)-A protein in Xenopus oocytes and demonstrated that it functions as an adenylate cyclase. Although RAC-B exhibits no catalytic activity when expressed in oocytes, co-expression of RAC-A and RAC-B negatively regulates the adenylate cyclase activity of RAC-A, suggesting that these two proteins interact in the membrane. Furthermore, a truncated version of RAC-A functions as a dominant negative mutant that inhibits the catalytic activity of the wild type receptor. The rac-A and rac-B genes encode developmentally regulated mRNAs which are expressed in the insect stage but not in the mammalian host stage of the parasite life cycle.


Asunto(s)
Adenilil Ciclasas/genética , Leishmania donovani/enzimología , Adenilil Ciclasas/química , Adenilil Ciclasas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , ARN Mensajero/análisis , Proteínas Recombinantes/biosíntesis , Transducción de Señal , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA