Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 208: 105-125, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35300999

RESUMEN

Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Glicoproteínas/genética , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Int J Biol Macromol ; 179: 1-19, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667553

RESUMEN

Three coronaviruses (CoVs) have threatened the world population by causing outbreaks in the last two decades. In late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged and caused the coronaviruses to disease 2019 (COVID-19), leading to the ongoing global outbreak. The other pandemic coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV), share a considerable level of similarities at genomic and protein levels. However, the differences between them lead to distinct behaviors. These differences result from the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which plays an essential role in coronavirus infection, pathogenicity, transmission, and evolution. In this review, we brought together many studies narrating a sequence of events and highlighting the differences among S proteins from SARS-CoV, MERS-CoV, and SARS-CoV-2. It was performed here, analysis of S protein sequences and structures from the three pandemic coronaviruses pointing out the mutations among them and what they come through. Additionally, we investigated the receptor-binding domain (RBD) from all S proteins explaining the mutation and biological importance of all of them. Finally, we discuss the mutation in the S protein from several new isolates of SARS-CoV-2, reporting their difference and importance. This review brings into detail how the variations in S protein that make SARS-CoV-2 more aggressive than its relatives coronaviruses and other differences between coronaviruses.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Animales , COVID-19/epidemiología , COVID-19/metabolismo , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Pandemias , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Appl Biochem Biotechnol ; 184(4): 1187-1199, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28971297

RESUMEN

As the addition of low concentrations of oxygen can favor the initial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds, this work verified the applicability of the microaerobic technology to enhance BTEX removal in an anaerobic bioreactor supplemented with high and low co-substrate (ethanol) concentrations. Additionally, structural alterations on the bioreactor microbiota were assessed throughout the experiment. The bioreactor was fed with a synthetic BTEX-contaminated water (~ 3 mg L-1 of each compound) and operated at a hydraulic retention time of 48 h. The addition of low concentrations of oxygen (1.0 mL min-1 of atmospheric air at 27 °C and 1 atm) assured high removal efficiencies (> 80%) for all compounds under microaerobic conditions. In fact, the applicability of this technology showed to be viable to enhance BTEX removal from contaminated waters, especially concerning benzene (with a 30% removal increase), which is a very recalcitrant compound under anaerobic conditions. However, high concentrations of ethanol adversely affected BTEX removal, especially benzene, under anaerobic and microaerobic conditions. Finally, although bacterial community richness decreased at low concentrations of ethanol, in general, the bioreactor microbiota could deal with the different operational conditions and preserved its functionality during the whole experiment.


Asunto(s)
Reactores Biológicos/microbiología , Hidrocarburos Aromáticos/metabolismo , Contaminantes del Agua/metabolismo , Purificación del Agua/métodos , Aerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA