Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 50: 109621, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37823063

RESUMEN

This dataset presents global soil organic carbon stocks in mangrove forests at 30 m resolution, predicted for 2020. We used spatiotemporal ensemble machine learning to produce predictions of soil organic carbon content and bulk density (BD) to 1 m soil depth, which were then aggregated to calculate soil organic carbon stocks. This was done by using training data points of both SOC (%) and BD in mangroves from a global dataset and from recently published studies, and globally consistent predictive covariate layers. A total of 10,331 soil samples were validated to have SOC (%) measurements and were used for predictive soil mapping. We used time-series remote sensing data specific to time periods when the training data were sampled, as well as long-term (static) layers to train an ensemble of machine learning model. Ensemble models were used to improve performance, robustness and unbiasedness as opposed to just using one learner. In addition, we performed spatial cross-validation by using spatial blocking of training data points to assess model performance. We predicted SOC stocks for the 2020 time period and applied them to a 2020 mangrove extent map, presenting both mean predictions and prediction intervals to represent the uncertainty around our predictions. Predictions are available for download under CC-BY license from 10.5281/zenodo.7729491 and also as Cloud-Optimized GeoTIFFs (global mosaics).

2.
Nat Commun ; 13(1): 6373, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289201

RESUMEN

Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers. Here, we assess the relationship between socioeconomic and biophysical variables and mangrove change across coastal geomorphic units worldwide from 1996 to 2016. Globally, we find that drivers of loss can also be drivers of gain, and that drivers have changed over 20 years. The association with economic growth appears to have reversed, shifting from negatively impacting mangroves in the first decade to enabling mangrove expansion in the second decade. Importantly, we find that community forestry is promoting mangrove expansion, whereas conversion to agriculture and aquaculture, often occurring in protected areas, results in high loss. Sustainable development, community forestry, and co-management of protected areas are promising strategies to reverse mangrove losses, increasing the capacity of mangroves to support human-livelihoods and combat climate change.


Asunto(s)
Ecosistema , Humedales , Humanos , Agricultura Forestal , Cambio Climático , Carbono , Conservación de los Recursos Naturales
3.
HGG Adv ; 3(3): 100119, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35677809

RESUMEN

Precision medicine is an emerging approach to managing disease by taking into consideration an individual's genetic and environmental profile toward two avenues to improved outcomes: prevention and personalized treatments. This framework is largely geared to conditions conventionally falling into the field of medical genetics. Here, we show that the same avenues to improving outcomes can be applied to conditions in the field of behavior genomics, specifically disorders of spoken language. Babble Boot Camp (BBC) is the first comprehensive and personalized program designed to proactively mitigate speech and language disorders in infants at predictable risk by fostering precursor and early communication skills via parent training. The intervention begins at child age 2 to 5 months and ends at age 24 months, with follow-up testing at 30, 42, and 54 months. To date, 44 children with a newborn diagnosis of classic galactosemia (CG) have participated in the clinical trial of BBC. CG is an inborn error of metabolism of genetic etiology that predisposes up to 85% of children to severe speech and language disorders. Of 13 children with CG who completed the intervention and all or part of the follow-up testing, only one had disordered speech and none had disordered language skills. For the treated children who completed more than one assessment, typical speech and language skills were maintained over time. This shows that knowledge of genetic risk at birth can be leveraged toward proactive and personalized management of a disorder that manifests behaviorally.

4.
Innov Pharm ; 13(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-37305593

RESUMEN

Individuals living in primary care health professional shortage areas (HPSAs) experience health inequities. Community pharmacists are healthcare professionals with an opportunity to provide care to underserved populations. The objective of this study was to compare non-dispensing services provided by Ohio community pharmacists in HPSAs and non-HPSAs. METHODS: An electronic, IRB-approved 19-item survey was sent to all Ohio community pharmacists practicing in full-county HPSAs and a random sample practicing in other counties (n=324). Questions assessed current provision of non-dispensing services as well as interest and barriers regarding such services. RESULTS: Seventy-four usable responses were received (23% response rate). Respondents in non-HPSAs were more likely to recognize their county's HPSA status than those in an HPSA (p=0.008). Pharmacies in non-HPSAs were significantly more likely to offer 11 or more non-dispensing services than those in HPSAs (p=0.002). Nearly 60% of respondents in non-HPSAs reported starting a new non-dispensing service during the COVID-19 pandemic compared to 27% of respondents in full HPSA counties (p=0.009). Most commonly reported barriers to providing non-dispensing services in both county types included lack of reimbursement (83%), workflow (82%), and space (70%). Respondents expressed interest in learning more information about public health and collaborative practice agreements. CONCLUSION: While the need for non-dispensing services is great in HPSAs, community pharmacies in full-county HPSAs in Ohio were less likely to provide these services or begin novel services. Barriers must be addressed so that community pharmacists can provide more non-dispensing services in HPSAs to increase access to care and promote health equity.

6.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190126, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983330

RESUMEN

Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr-1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecosistema , Política Ambiental/legislación & jurisprudencia , Calentamiento Global/prevención & control , Calentamiento Global/legislación & jurisprudencia , Regulación Gubernamental
7.
Sci Adv ; 4(11): eaat1869, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30443593

RESUMEN

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

8.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078344

RESUMEN

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...