Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 248: 114257, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399991

RESUMEN

The aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC50 values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC50-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC50-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide.


Asunto(s)
Decápodos , Insecticidas , Palaemonidae , Plaguicidas , Femenino , Animales , Larva , Insecticidas/toxicidad , Agua Dulce , Glutatión Transferasa
2.
Chemosphere ; 286(Pt 3): 131920, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426275

RESUMEN

The aim of this study was to evaluate the acute effects of the pyrethroid cypermethrin (CYP) and the last generation pesticide spirotetramat (STM) on the prawn Macrobrachium borellii. Initially, the 96-h LC50 was determined in adult prawns. Then, prawns were exposed to sublethal concentrations of pesticides (5% and 20% of the 96-h LC50 values) for four days and hepatopancreas were dissected for biomarkers analyses. Total protein and uric acid content, glutathione S-transferase (GST) activity, levels of lipid peroxidation (LPO), and protein oxidation (PO) were evaluated. Additionally, the presence of histopathological changes, lipofuscins, and neutral lipids accumulation were analyzed. The 96-h LC50 values were 0.12 µg/L and 8.2 mg/L for CYP and STM, respectively. The total proteins and uric acid content were not significantly affected by the treatments (p > 0.05). STM significantly affected the GST activity only at the highest concentration (p < 0.001). However, LPO and OP levels were affected by the lowest concentrations of both pesticides (p < 0.003). CYP and STM caused dose-dependent histological damage as was indicated by the histopathological index. The accumulation of lipofuscins showed a dose-dependent response, while the neutral lipids were significantly accumulated in the prawns exposed to the lowest concentration of both pesticides (p < 0.001). The integrated biomarker index (IBRv2) results indicated that the histological parameters represented the most sensitive biomarkers in M. borellii exposed to CYP and STM. Besides, the pyrethroid showed the highest response at concentration ranges that could be present in its natural environments.


Asunto(s)
Palaemonidae , Plaguicidas , Contaminantes Químicos del Agua , Animales , Agua Dulce , Hepatopáncreas , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Ecotoxicol Environ Saf ; 196: 110565, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32272347

RESUMEN

The aim of the present work was to study the effect of the pyrethroid cypermethrin (CYP) on the non-target freshwater snail Chilina parchappi. Initially, the sensitivity of adult snails to CYP was evaluated via the 96-h LC50 test. Then, snails were exposed to subtethal CYP concentrations (0.1 and 10 mg/l) for 1, 4 and 10 days and the digestive glands were dissected for biomarkers analyses. Enzymatic activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as total glutathione reduced (GSH) levels, were determined. Histological analyses of morphology, intracellular accumulation of lipofucsins and neutral lipids accumulation in the digestive gland were also evaluated. As compared to other molluscs, C. parchappi showed high resistance to CYP exposure evidenced by the 96-h LC50 value (44.59 mg/l). Snails exposed to sublethal CYP concentrations showed a statistically significant increase (p < 0.01) in GST (79-116%) and GPx (45-190%) activities with respect to controls. However, CAT activity showed a tendency to decrease with CYP treatment but was not statistically significantly different compared to control. Only high CYP concentration caused a statistically significant increase (p < 0.01) in GSH content (95-196%). There was evidence of structural changes in the digestive gland of snails exposed to CYP, showing a dose-dependent response. In exposed snails, some of the main symptoms included a reduction in the thickness of the epithelium, vacuolisation of the digestive cells and an increase in the number of excretory cells. Accumulation of lipofuscins (933-1006%) and neutral lipids (403%) were statistically significantly higher (p < 0.05) in snails exposed to CYP compared to control. This study showed that C. parchappii is quite tolerant to CYP exposure and that at sublethal concentrations, GSH metabolism could play a protective role against the pesticide harm in snails. Therefore, it would be interesting to study the response of this organism to other environmental stressors to assess its potential use in monitoring programs.


Asunto(s)
Agua Dulce/química , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Piretrinas/toxicidad , Caracoles/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Catalasa/metabolismo , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/metabolismo , Sistema Digestivo/patología , Relación Dosis-Respuesta a Droga , Ecotoxicología , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Dosificación Letal Mediana , Caracoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA