Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4918, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995799

RESUMEN

Considerable evidence supports the release of pathogenic aggregates of the neuronal protein α-Synuclein (αSyn) into the extracellular space. While this release is proposed to instigate the neuron-to-neuron transmission and spread of αSyn pathology in synucleinopathies including Parkinson's disease, the molecular-cellular mechanism(s) remain unclear. To study this, we generated a new mouse model to specifically immunoisolate neuronal lysosomes, and established a long-term culture model where αSyn aggregates are produced within neurons without the addition of exogenous fibrils. We show that neuronally generated pathogenic species of αSyn accumulate within neuronal lysosomes in mouse brains and primary neurons. We then find that neurons release these pathogenic αSyn species via SNARE-dependent lysosomal exocytosis. The released aggregates are non-membrane enveloped and seeding-competent. Additionally, we find that this release is dependent on neuronal activity and cytosolic Ca2+. These results propose lysosomal exocytosis as a central mechanism for the release of aggregated and degradation-resistant proteins from neurons.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Animales , Exocitosis , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo , alfa-Sinucleína/metabolismo
2.
Hypertension ; 76(3): 795-807, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32654560

RESUMEN

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.


Asunto(s)
Arteriolas/fisiopatología , Barrera Hematoencefálica , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Endotelio Vascular , Hipertensión , Macrófagos/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiopatología , Permeabilidad Capilar/fisiología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Sistema Glinfático/inmunología , Sistema Glinfático/patología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones
3.
Stroke ; 51(6): 1844-1854, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32404038

RESUMEN

Background and Purpose- Commensal gut bacteria have a profound impact on stroke pathophysiology. Here, we investigated whether modification of the microbiota influences acute and long-term outcome in mice subjected to stroke. Methods- C57BL/6 male mice received a cocktail of antibiotics or single antibiotic. After 4 weeks, fecal bacterial density of the 16S rRNA gene was quantitated by qPCR, and phylogenetic classification was obtained by 16S rRNA gene sequencing. Infarct volume and hemispheric volume loss were measured 3 days and 5 weeks after middle cerebral artery occlusion, respectively. Neurological deficits were tested by the Tape Test and the open field test. Results- Mice treated with a cocktail of antibiotics displayed a significant reduction of the infarct volume in the acute phase of stroke. The neuroprotective effect was abolished in mice recolonized with a wild-type microbiota. Single antibiotic treatment with either ampicillin or vancomycin, but not neomycin, was sufficient to reduce the infarct volume and improved motorsensory function 3 days after stroke. This neuroprotective effect was correlated with a specific microbial population rather than the total bacterial density. In particular, random forest analysis trained for the severity of the brain damage revealed that Bacteroidetes S24.7 and the enzymatic pathway for aromatic metabolism discriminate between large versus small infarct size. Additionally, the microbiota signature in the ampicillin-treated mice was associated with a reduced gut inflammation, long-term favorable outcome shown by an amelioration of the stereotypic behavior, and a reduction of brain tissue loss in comparison to control and was predictive of a regulation of short-chain fatty acids and tryptophan pathways. Conclusions- The findings highlight the importance of the intestinal microbiota in short- and long-term outcomes of ischemic stroke and raises the possibility that targeted modification of the microbiome associated with specific microbial enzymatic pathways may provide a preventive strategy in patients at high risk for stroke. Visual Overview- An online visual overview is available for this article.


Asunto(s)
Bacterias/crecimiento & desarrollo , Isquemia Encefálica , Microbioma Gastrointestinal , Enfermedad Aguda , Animales , Bacterias/clasificación , Bacterias/genética , Isquemia Encefálica/microbiología , Isquemia Encefálica/prevención & control , Masculino , Ratones , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/prevención & control
4.
Neuropsychopharmacology ; 45(2): 374-383, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323660

RESUMEN

Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.


Asunto(s)
Membrana Celular/metabolismo , Dronabinol/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Psicotrópicos/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Factores de Edad , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/ultraestructura , Subunidades de Proteína/metabolismo , Psicotrópicos/administración & dosificación , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
5.
Commun Biol ; 2: 418, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754648

RESUMEN

Alpha-synuclein (α-syn) is an abundant neuroprotein elevated in cocaine addicts, linked to drug craving, and recruited to axon terminals undergoing glutamatergic plasticity - a proposed mechanism for substance abuse. However, little is known about normal α-syn function or how it contributes to substance abuse. We show that α-syn is critical for preference of hedonic stimuli and the cognitive flexibility needed to change behavioral strategies, functions that are altered with substance abuse. Electron microscopic analysis reveals changes in α-syn targeting of ventral tegmental area axon terminals that is dependent upon the duration of cocaine exposure. The dynamic changes in presynaptic α-syn position it to control neurotransmission and fine-tune the complex afferent inputs to dopamine neurons, potentially altering functional dopamine output. Cocaine also increases postsynaptic α-syn where it is needed for normal ALIX function, multivesicular body formation, and cocaine-induced exosome release indicating potentially similar α-syn actions for vesicle release pre- and post-synaptically.


Asunto(s)
Trastornos Relacionados con Cocaína/etiología , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/fisiopatología , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Neuronas Dopaminérgicas/ultraestructura , Espacio Extracelular/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Motivación , Actividad Motora , Recompensa , Transducción de Señal , alfa-Sinucleína/genética
6.
J Neurosci ; 38(30): 6722-6736, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29946039

RESUMEN

Exposure to low-dose lipopolysaccharide (LPS) before cerebral ischemia is neuroprotective in stroke models, a phenomenon termed preconditioning (PC). Although it is well established that LPS-PC induces central and peripheral immune responses, the cellular mechanisms modulating ischemic injury remain unclear. Here, we investigated the role of immune cells in the brain protection afforded by PC and tested whether monocytes may be reprogrammed by ex vivo LPS exposure, thus modulating inflammatory injury after cerebral ischemia in male mice. We found that systemic injection of low-dose LPS induces a Ly6Chi monocyte response that protects the brain after transient middle cerebral artery occlusion (MCAO) in mice. Remarkably, adoptive transfer of monocytes isolated from preconditioned mice into naive mice 7 h after transient MCAO reduced brain injury. Gene expression and functional studies showed that IL-10, inducible nitric oxide synthase, and CCR2 in monocytes are essential for neuroprotection. This protective activity was elicited even if mouse or human monocytes were exposed ex vivo to LPS and then injected into male mice after stroke. Cell-tracking studies showed that protective monocytes are mobilized from the spleen and reach the brain and meninges, where they suppress postischemic inflammation and neutrophil influx into the brain parenchyma. Our findings unveil a previously unrecognized subpopulation of splenic monocytes capable of protecting the brain with an extended therapeutic window and provide the rationale for cell therapies based on the delivery of autologous or allogeneic protective monocytes in patients after ischemic stroke.SIGNIFICANCE STATEMENT Inflammation is a key component of the pathophysiology of the brain in stroke, a leading cause of death and disability with limited therapeutic options. Here, we investigate endogenous mechanisms of protection against cerebral ischemia. Using lipopolysaccharide (LPS) preconditioning (PC) as an approach to induce ischemic tolerance in mice, we found generation of neuroprotective monocytes within the spleen, from which they traffic to the brain and meninges, suppressing postischemic inflammation. Importantly, systemic LPS-PC can be mimicked by adoptive transfer of in vitro-preconditioned mouse or human monocytes at translational relevant time points after stroke. This model of neuroprotection may facilitate clinical efforts to increase the efficacy of BM mononuclear cell treatments in acute neurological diseases such as cerebral ischemia.


Asunto(s)
Precondicionamiento Isquémico/métodos , Lipopolisacáridos/farmacología , Monocitos , Neuroprotección/inmunología , Accidente Cerebrovascular , Traslado Adoptivo , Animales , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/trasplante , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología
7.
J Clin Invest ; 126(12): 4674-4689, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841763

RESUMEN

Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/metabolismo , Hipertensión/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Angiotensina II/efectos adversos , Angiotensina II/farmacología , Animales , Barrera Hematoencefálica/patología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Hipertensión/genética , Hipertensión/patología , Macrófagos/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
8.
J Neurosci ; 33(50): 19579-89, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24336722

RESUMEN

Loss-of-function mutations of progranulin (PGRN) have been linked to frontotemporal dementia, but little is known about the effects of PGRN deficiency on the brain in health and disease. PGRN has been implicated in neurovascular development, inflammation, and Wnt signaling, a pathway involved in the formation of the blood-brain barrier (BBB). Because BBB alterations and inflammation contribute to ischemic brain injury, we examined the role of PGRN in the brain damage produced by ischemia-reperfusion. PGRN(+/-) and PGRN(-/-) mice underwent middle cerebral artery occlusion (MCAO) with monitoring of cerebral blood flow. Infarct volume and motor deficits were assessed 72 h later. Post-ischemic inflammation was examined by expression of inflammatory genes and flow cytometry. BBB structure and permeability were examined by electron microscopy (EM) and Evans blue (EB) extravasation, respectively. MCAO resulted in ~60% larger infarcts in PGRN(+/-) and PGRN(-/-) mice, an effect independent of hemodynamic factors or post-ischemic inflammation. Rather, massive hemorrhages and post-ischemic BBB disruption were observed, unrelated to degradation of tight junction (TJ) proteins or matrix metalloproteinases (MMPs). By EM, TJ were 30-52% shorter, fewer, and less interlocking, suggesting a weaker seal between endothelial cells. Intracerebral injection of platelet-derived growth factor-CC (PDGF-CC), which increases BBB permeability, resulted in a more severe BBB breakdown in PGRN(+/-) and PGRN(-/-) than wild-type mice. We describe a previously unrecognized involvement of PGRN in the expression of key ultrastructural features of the BBB. Such a novel vasoprotective role of PGRN may contribute to brain dysfunction and damage in conditions associated with reduced PGRN function.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/fisiopatología , Células Endoteliales/metabolismo , Granulinas , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Noqueados , Progranulinas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Accidente Cerebrovascular/fisiopatología
9.
Brain Res ; 1518: 71-81, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23583481

RESUMEN

In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females.


Asunto(s)
Eficiencia/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Receptores Opioides delta/metabolismo , Estrés Psicológico/patología , Analgésicos Opioides/farmacología , Animales , Castración , Modelos Animales de Enfermedad , Eficiencia/efectos de los fármacos , Ciclo Estral/efectos de los fármacos , Ciclo Estral/fisiología , Femenino , Reacción Cataléptica de Congelación/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Microscopía Inmunoelectrónica , Morfina/farmacología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/ultraestructura , Caracteres Sexuales , Transmisión Sináptica/efectos de los fármacos
10.
Psychopharmacology (Berl) ; 221(1): 101-13, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22160162

RESUMEN

RATIONALE: The nucleus accumbens (Acb) shell and caudate-putamen nucleus (CPu) are respectively implicated in the motivational and motor effects of dopamine, which are mediated in part through dopamine D2-like receptors (D2Rs) and modulated by activation of the cannabinoid-1 receptor (CB1R). The dopamine D(2/D3) receptor agonist, quinpirole elicits internalization of D2Rs in isolated cells; however, dendritic and axonal targeting of D2Rs may be highly influenced by circuit-dependent changes in vivo and potentially influenced by endogenous CB1R activation. OBJECTIVE: We sought to determine whether quinpirole alters the surface/cytoplasmic partitioning of D2Rs in striatal neurons in vivo. METHODS: To address this question, we examined the electron microscopic immunolabeling of D2 and CB1 receptors in the Acb shell and CPu of male mice at 1 h following a single subcutaneous injection of quinpirole (0.5 mg/kg) or saline, a time point when quinpirole reduced locomotor activity. RESULTS: Many neuronal profiles throughout the striatum of both treatment groups expressed the D2R and/or CB1R. As compared with saline, quinpirole-injected mice showed a significant region-specific decrease in the plasmalemmal and increase in the cytoplasmic density of D2R-immunogold particles in postsynaptic dendrites without CB1R-immunolabeling in the Acb shell. However, quinpirole produced a significant increase in the plasmalemmal density of D2R immunogold in CB1R negative axons in both the Acb shell and CPu. CONCLUSIONS: Our results provide in vivo evidence for agonist-induced D2R trafficking that is inversely related to CB1R distribution in postsynaptic neurons of Acb shell and in presynaptic axons in this region and in the CPu.


Asunto(s)
Cuerpo Estriado/metabolismo , Densidad Postsináptica/metabolismo , Terminales Presinápticos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinpirol/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo
11.
Synapse ; 64(12): 886-97, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20939059

RESUMEN

Cannabinoid-type 1 (CB1) receptors are implicated in µ-opioid receptor (µ-OR)-dependent reward ascribed partially to mesolimbic dopamine release in the nucleus accumbens (Acb) shell. Thus, CB1 receptor gene deletion may preferentially alter the availability of µ-ORs and/or dopamine innervation in this brain region, which is functionally distinct from the motor-associated Acb core. To test this hypothesis, we examined the electron microscopic immunolabeling of the µ-OR and the dopamine-synthesizing enzyme, tyrosine hydroxylase (TH) in Acb shell, and core of adult C57BL/6J wild-type (WT) and CB1-knock-out (KO) mice. The µ-OR-immunogold particles were observed in the cytoplasm and on the plasmalemma in dendrites, dendritic spines, and axon terminals throughout the Acb. Compared to WT, the Acb shell of CB1-KO mice showed a lower cytoplasmic density of µ-ORs in dendrites and fewer µ-OR labeled, but not unlabeled, dendritic spines. In this region, the CB1-KO's had a significantly enhanced plasmalemmal density of µ-OR-immunogold in axon terminals, 70% of which formed excitatory-type synapses. However, the number of both µ-OR-labeled terminals and TH-labeled small varicosities was significantly reduced in the Acb shell of CB1-KO's. These adaptations were not seen in the Acb core, where CB1-KO's had a preferentially lower dendritic plasmalemmal and total spine density of µ-OR immunogold. Our results indicate that constitutive deletion of the CB1 receptor gene has a major impact on the pre and postsynaptic availability of µ-ORs at axospinous synapses and on the dopamine innervation of the Acb shell as well as the dendritic surface expression of µ-ORs in Acb core of mature rodents.


Asunto(s)
Axones/metabolismo , Axones/fisiología , Dendritas/metabolismo , Dopamina/fisiología , Núcleo Accumbens/metabolismo , Receptor Cannabinoide CB1/deficiencia , Receptores Opioides mu/metabolismo , Animales , Compartimento Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Receptores Opioides mu/fisiología
12.
J Neurosci ; 28(39): 9670-81, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18815253

RESUMEN

Opiate addiction is characterized by progressive increases in drug intake over time suggesting maladaptive changes in motivational and reward systems. These behaviors are mediated by dopaminergic neurons originating from the ventral tegmental area (VTA), and long-term changes of these dopaminergic neurons are attributed to increased postsynaptic glutamatergic activation. Indeed, chronic morphine administration is known to increase AMPA receptor glutamate receptor 1 (GluR1) subunit in the VTA. However, there is no ultrastructural evidence that morphine affects the expression or surface availability of GluR1 subunits in VTA neurons of defined distribution or transmitter phenotype. Therefore, we examined electron microscopic immunolabeling of GluR1 and tyrosine hydroxylase (TH) in two VTA regions of rats perfused 1 h after a single injection of morphine, or chronic morphine in intermittent-escalating doses for 14 d, and appropriate saline controls. Acute morphine administration produced a significant increase in GluR1 immunogold particles at the plasma membrane and postsynaptic densities in both TH- and non-TH-containing dendrites in the parabrachial VTA, a region that contains mainly prefrontal-cortical-projecting dopaminergic neurons involved in motivation and drug-seeking behavior. Chronic morphine administration maintained the increased synaptic GluR1 labeling in the parabrachial VTA, but also increased the number of GluR1-labeled synapses and TH immunoreactivity in dendrites of the paranigral VTA where substantially more dopaminergic neurons project to limbic structures implicated in locomotor activation and reward. These results demonstrate a region- and dose-dependent redistribution of GluR1-containing AMPA receptors, which is consistent with acute morphine activation of cortical-projecting VTA neurons and chronic morphine activation of limbic-projecting VTA neurons.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Morfina/administración & dosificación , Neuronas , Receptores AMPA/metabolismo , Área Tegmental Ventral/citología , Animales , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Masculino , Microscopía Inmunoelectrónica/métodos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Estilbamidinas/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos
13.
Exp Neurol ; 210(2): 750-61, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18294632

RESUMEN

The nucleus accumbens (Acb) is an extensively studied neuroanatomical substrate of opiate reward and the neural plasticity associated with chronic opioid use. The cellular mechanisms mediating opioid-dependent plasticity are uncertain, however AMPA-type glutamate receptor trafficking in dopamine D1 dopamine receptor (D1R) expressing neurons may be a potential cellular pathway for these adaptations, although there is no evidence for this possibility. Immunogold electron microscopy was used to quantify the surface expression of the AMPA GluR1 subunit in dendritic profiles of neurons in the Acb in response to intermittent 14-day non-contingent injections of escalating doses of morphine, a model that parallels opioid self-administration. To determine if changes in GluR1 trafficking occurred in neurons potentially sensitive to dopamine-induced D1R activation, immunoperoxidase labeling of D1R was combined with immunogold labeling of GluR1. Immunogold quantification was performed in two distinct Acb subregions, the shell, an area involved in processing incentive salience related to rewarding stimuli, and the core, an area involved in reward-seeking behaviors. We provide the first report that chronic morphine administration is associated with a receptor-phenotypic decrease in surface trafficking of GluR1 in Acb subregions. When compared to saline injected animals, morphine produced a decrease in plasma membrane GluR1 labeling in medium- and large-sized D1R expressing dendritic profiles in the Acb shell. In contrast, in the Acb core, surface GluR1 was decreased in small-sized dendrites that did not express the dopamine receptor. These results indicate that chronic intermittent injection of escalating doses of morphine is accompanied by ultrastructural plasticity of GluR1 in neurons that are responsive to glutamate and dopamine-induced D1R activation in the Acb shell, and neurons capable of responding to glutamate but not D1R receptor stimulation in the Acb core. Thus, AMPA receptor trafficking associated with chronic opiate exposure in functionally distinct areas of the Acb may be distinguished by D1R receptor activation, suggesting the potential for differing neural substrates of reward and motor aspects of addictive processes involving glutamate and dopamine signaling.


Asunto(s)
Morfina/administración & dosificación , Narcóticos/administración & dosificación , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Receptores AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Conducta Animal , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Esquema de Medicación , Masculino , Microscopía Inmunoelectrónica/métodos , Neuronas/ultraestructura , Núcleo Accumbens/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética
14.
Brain Res ; 1047(1): 65-71, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15878767

RESUMEN

Repeated morphine administration has been shown to produce tolerance to the antinociceptive effects of morphine. However, the degree to which repeated morphine administration decreases antinociception is exaggerated by repeated behavioral testing, a phenomenon known as behavioral tolerance. An important question is whether behavioral tolerance can be overcome by direct administration of morphine into the ventrolateral periaqueductal gray (vPAG), a key structure contributing to morphine antinociception. Rats were injected with morphine or saline into the vPAG (Experiment 1) or subcutaneously (Experiment 2) followed 20 min later with hot-plate testing. The control groups received the same drug administration, but no nociceptive testing. Repeated nociceptive testing or repeated morphine administration produced antinociceptive tolerance regardless of whether morphine was injected into the vPAG or systemically. Administration of a high dose of morphine (20 mg/kg, s.c.) was able to overcome the development of behavioral tolerance, but not pharmacological tolerance revealing separate mechanisms for these two types of tolerance. These data indicate that behavioral tolerance is independent of the route of morphine administration.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Morfina/farmacología , Umbral del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Sustancia Gris Periacueductal/efectos de los fármacos , Analgésicos Opioides/farmacología , Anestésicos Intravenosos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Microinyecciones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Dolor/fisiopatología , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Sustancia Gris Periacueductal/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA