Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7584, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217171

RESUMEN

Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.


Asunto(s)
Membrana Basal , Diferenciación Celular , Células Epiteliales , Heparitina Sulfato , Ratones Noqueados , Glándulas Salivales , Transducción de Señal , Sulfotransferasas , Animales , Heparitina Sulfato/metabolismo , Membrana Basal/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/citología , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/citología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Masculino , Factores de Crecimiento de Fibroblastos/metabolismo
2.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979260

RESUMEN

Cyclin D1 is the activating subunit of the cell cycle kinases CDK4 and CDK6, and its dysregulation is a well-known oncogenic driver in many human cancers. The biological function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G2 and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unknown substrate of cyclin D1-CDK4/6. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 also during the G1 phase of the cell cycle. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.

3.
Res Sq ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39070640

RESUMEN

DNA Double-strand breaks (DSBs) are harmful lesions and major sources of genomic instability. Studies have suggested that DSBs induce local transcriptional silencing that consequently promotes genomic stability. Several factors have been proposed to actively participate in this process, including ATM and Polycomb repressive complex 1 (PRC1). Here we found that disrupting PRC1 clustering disrupts DSB-induced gene silencing. Interactome analysis of PHC2, a PRC1 subunit that promotes the formation of the Polycomb body, found several nucleoporins that constitute the Nuclear Pore Complex (NPC). Similar to PHC2, depleting the nucleoporins also disrupted the DSB-induced gene silencing. We found that some of these nucleoporins, such as NUP107 and NUP43, which are members of the Y-complex of NPC, localize to DSB sites. These nucleoporin-enriched DSBs were distant from the nuclear periphery. The presence of nucleoporins and PHC2 at DSB regions were inter-dependent, suggesting that they act cooperatively in the DSB-induced gene silencing. We further found two structural components within NUP107 to be necessary for the transcriptional repression at DSBs: ATM/ATR-mediated phosphorylation at Serine37 residue within the N-terminal disordered tail, and the NUP133-binding surface at the C-terminus. These results provide a new functional interplay among nucleoporins, ATM and the Polycomb proteins in the DSB metabolism, and underscore their emerging roles in genome stability maintenance. *Hongseon Song, Yubin Bae, Sangin Kim, and Dante Deascanis contributed equally to this work.

4.
Matrix Biol ; 133: 134-149, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38944161

RESUMEN

Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.


Asunto(s)
Glomérulos Renales , Ratones Noqueados , Podocitos , Sulfotransferasas , Animales , Ratones , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Sulfotransferasas/deficiencia , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Heparitina Sulfato/metabolismo , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/patología , Membrana Basal Glomerular/ultraestructura , Riñón/metabolismo , Riñón/patología
5.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
6.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260436

RESUMEN

The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.

7.
Sci Rep ; 11(1): 1197, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441920

RESUMEN

Airports can affect birds by hindering acoustic communication. Here, we investigated the impacts of aircraft events on vocal behavior in wood thrush (Hylocichla mustelina) breeding one mile from an airport in Ithaca, NY, USA. We identified the number of wood thrush songs between 0500 and 0800 h at various distances from the airport and on days with various morning flight schedules. We also analyzed the number of sites from which birds sang during the peak of aircraft events (proxy of number of wood thrush). We found that birds sang more from 0600 to 0640 h when there were aircraft events during this period. This increased vocal behavior is likely explained by increased song output per individual wood thrush, rather than more wood thrush vocalizing. Increased song rate may negatively affect wood thrush fitness through increased energetic demands and/or time tradeoffs with other important behaviors, such as foraging. Identifying the noise thresholds associated with fitness costs (if any) and how different behavioral strategies (i.e. changing the pattern of vocalizations) may allow individuals to evade these costs would be useful for establishing conservation policy in breeding habitats used by passerines, such as the wood thrush.


Asunto(s)
Pájaros Cantores/fisiología , Aeronaves , Animales , Ecosistema , Ruido/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA