Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(9): 110693, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262777

RESUMEN

The cGAS-STING pathway responds to cytosolic DNA to elicit host immunity to infection. The activation of stimulator of interferon genes (STING) can trigger a number of critical cellular responses including inflammation, noncanonical autophagy, lipid metabolism, senescence, and cell death. STING-mediated immunity through the production of type I interferons (IFNs) and nuclear factor kappa B (NF-κB)-driven proinflammatory cytokines is primarily driven via the effector protein TBK1. We have previously found that IκBα kinase epsilon (IKKε), a homolog of TBK1, can also facilitate STING-NF-κB responses. Therefore, a thorough understanding of how IKKε participates in STING signaling is essential. Here, we used a combination of genetic and biochemical approaches to provide mechanistic details into how IKKε confers non-IFN (e.g., NF-κB and MAPK) STING responses in macrophages, including in the absence of TBK1. We demonstrate a conserved mechanism of STING binding between TBK1 and IKKε. These findings strengthen our understanding of cGAS-STING signaling and the preservation of host immunity in cases of TBK1-deficiency.

2.
Chemosphere ; 363: 142830, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002655

RESUMEN

The environmental ubiquity of tire and road wear particles (TRWP) underscores the need to understand the occurrence, persistence, and environmental effects of tire-related chemicals in aquatic ecosystems. One such chemical is 6PPD-quinone (6PPD-Q), a transformation product of the tire antioxidant 6PPD. In urban stormwater runoff 6PPD-Q can exceed acute toxicity thresholds for several salmonid species and is being implicated in significant coho salmon losses in the Pacific Northwest. There is a critical need to understand the prevalence of 6PPD-Q across watersheds to identify habitats heavily affected by TRWPs. We conducted a reconnaissance of 6PPD and 6PPD-Q in surface waters across the United States from sites (N = 94) with varying land use (urban, agricultural, and forested) and streamflow to better understand stream exposures. A rapid, low-volume direct-inject, liquid chromatography mass spectrometry method was developed for the quantitation of 6PPD-Q and screening for 6PPD. Laboratory holding times, bottle material, headspace, and filter materials were investigated to inform best practices for 6PPD-Q sampling and analysis. Glass bottles with PTFE-lined caps minimized sorption and borosilicate glass fiber filters provided the highest recovery. 6PPD-Q was stable for at least 5 months in pure laboratory solutions and for 75 days at 5 °C with minimal headspace in the investigated surface water and stormwaters. Results also indicated samples can be frozen to extend holding times. 6PPD was not detected in any of the 526 analyzed samples and there were no detections of 6PPD-Q at agricultural or forested sites. 6PPD-Q was frequently detected in stormwater (57%, N = 90) and from urban impacted sites (45%, N = 276) with concentrations ranging from 0.002 to 0.29 µg/L. The highest concentrations, above the lethal level for coho salmon, occurred during stormwater runoff events. This highlights the importance of capturing episodic runoff events in urban areas near ecologically relevant habitat or nursery grounds for sensitive species.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ríos/química , Estados Unidos , Animales
3.
Cell Death Differ ; 31(3): 335-347, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38396150

RESUMEN

During apoptosis mediated by the intrinsic pathway, BAX/BAK triggers mitochondrial permeabilization and the release of cytochrome-c, followed by a dramatic remodelling of the mitochondrial network that results in mitochondrial herniation and the subsequent release of pro-inflammatory mitochondrial components. Here, we show that mitochondrial herniation and subsequent exposure of the inner mitochondrial membrane (IMM) to the cytoplasm, initiates a unique form of mitophagy to deliver these damaged organelles to lysosomes. IMM-induced mitophagy occurs independently of canonical PINK1/Parkin signalling and is driven by ubiquitination of the IMM. Our data suggest IMM-induced mitophagy is an additional safety mechanism that cells can deploy to contain damaged mitochondria. It may have particular relevance in situations where caspase activation is incomplete or inhibited, and in contexts where PINK1/Parkin-mitophagy is impaired or overwhelmed.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Membranas Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo
4.
Sci Total Environ ; 904: 166753, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673265

RESUMEN

Antimicrobial resistance (AMR) is now recognized as a leading global threat to human health. Nevertheless, there currently is a limited understanding of the environment's role in the spread of AMR and antibiotic resistance genes (ARGs). In 2019, the U.S. Geological Survey conducted the first statewide assessment of antibiotic resistant bacteria (ARB) and ARGs in surface water and bed sediment collected from 34 stream locations across Iowa. Environmental samples were analyzed for a suite of 29 antibiotics and plated on selective media for 15 types of bacteria growth; DNA was extracted from culture growth and used in downstream polymerase chain reaction (PCR) assays for the detection of 24 ARGs. ARGs encoding resistance to antibiotics of clinical importance to human health and disease prevention were prioritized as their presence in stream systems has the potential for environmental significance. Total coliforms, Escherichia coli (E. coli), and staphylococci were nearly ubiquitous in both stream water and stream bed sediment samples, with enterococci present in 97 % of water samples, and Salmonella spp. growth present in 94 % and 67 % of water and bed sediment samples. Bacteria enumerations indicate that high bacteria loads are common in Iowa's streams, with 23 (68 %) streams exceeding state guidelines for primary contact for E. coli in recreational waters and 6 (18 %) streams exceeding the secondary contact advisory level. Although antibiotic-resistant E. coli growth was detected from 40 % of water samples, vancomycin-resistant enterococci (VRE) and penicillinase-resistant Staphylococcus aureus (MRSA) colony growth was detected from nearly all water samples. A total of 14 different ARGs were detected from viable bacteria cells from 30 Iowa streams (88 %, n = 34). Study results provide the first baseline understanding of the prevalence of ARB and ARGs throughout Iowa's waterways and health risk potential for humans, wildlife, and livestock using these waterways for drinking, irrigating, or recreating.


Asunto(s)
Genes Bacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Estados Unidos , Escherichia coli/genética , Staphylococcus aureus Resistente a Meticilina/genética , Antagonistas de Receptores de Angiotensina/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Bacterias/genética , Farmacorresistencia Microbiana/genética , Iowa , Agua/análisis , Antibacterianos/farmacología , Antibacterianos/análisis
5.
Environ Sci Technol ; 57(30): 10940-10950, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467138

RESUMEN

Urban stormwater runoff frequently contains the car tire transformation product 6PPD-quinone, which is highly toxic to juvenile and adult coho salmon (Onchorychus kisutch). However, it is currently unclear if embryonic stages are impacted. We addressed this by exposing developing coho salmon embryos starting at the eyed stage to three concentrations of 6PPD-quinone twice weekly until hatch. Impacts on survival and growth were assessed. Further, whole-transcriptome sequencing was performed on recently hatched alevin to address the potential mechanism of 6PPD-quinone-induced toxicity. Acute mortality was not elicited in developing coho salmon embryos at environmentally measured concentrations lethal to juveniles and adults, however, growth was inhibited. Immediately after hatching, coho salmon were sensitive to 6PPD-quinone mortality, implicating a large window of juvenile vulnerability prior to smoltification. Molecularly, 6PPD-quinone induced dose-dependent effects that implicated broad dysregulation of genomic pathways governing cell-cell contacts and endothelial permeability. These pathways are consistent with previous observations of macromolecule accumulation in the brains of coho salmon exposed to 6PPD-quinone, implicating blood-brain barrier disruption as a potential pathway for toxicity. Overall, our data suggests that developing coho salmon exposed to 6PPD-quinone are at risk for adverse health events upon hatching while indicating potential mechanism(s) of action for this highly toxic chemical.


Asunto(s)
Benzoquinonas , Barrera Hematoencefálica , Permeabilidad Capilar , Oncorhynchus kisutch , Fenilendiaminas , Contaminantes Químicos del Agua , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Oncorhynchus kisutch/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Fenilendiaminas/análisis , Fenilendiaminas/metabolismo , Fenilendiaminas/toxicidad , Benzoquinonas/análisis , Benzoquinonas/metabolismo , Benzoquinonas/toxicidad , Transcripción Genética/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Biotransformación
6.
EMBO J ; 42(12): e112712, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37139896

RESUMEN

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Macrófagos/metabolismo , Nucleotidiltransferasas/metabolismo , ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
7.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626647

RESUMEN

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

8.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36657670

RESUMEN

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Estados Unidos , Humanos , Iowa , Contaminantes Químicos del Agua/análisis , Agricultura , Monitoreo del Ambiente/métodos
9.
Sci Total Environ ; 856(Pt 2): 159069, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174698

RESUMEN

Wastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.1 km upstream of the outfall, at the effluent outfall, and 0.1 km below the outfall) during base-flow conditions from two months (January and May) of a temperate-region effluent-dominated stream containing a complex mixture of pharmaceuticals and other contaminants of emerging concern. RNA-sequencing identified potential biological impacts and biomarkers of WWTP effluent exposure that extend past traditional markers of endocrine disruption. Transcriptomics revealed changes to a wide range of biological functions and pathways including cardiac, neurological, visual, metabolic, and signaling pathways. These transcriptomic changes varied by developmental stage and displayed sensitivity to variable chemical composition and concentration of effluent, thus indicating a need for stage-specific biomarkers. Some transcripts are known to be associated with genes related to pharmaceuticals that were present in the collected samples. Although traditional biomarkers of endocrine disruption were not enriched in either month, a high estrogenicity signal was detected upstream in May and implicates the presence of unidentified chemical inputs not captured by the targeted chemical analysis. This work reveals associations between bioeffects of exposure, stage of development, and the composition of chemical mixtures in effluent-dominated surface water. The work underscores the importance of measuring effects beyond the endocrine system when assessing the impact of bioactive chemicals in WWTP effluent and identifies a need for non-targeted chemical analysis when bioeffects are not explained by the targeted analysis.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Aguas Residuales/química , Ríos/química , Pez Cebra/metabolismo , Transcriptoma , Eliminación de Residuos Líquidos , Larva/metabolismo , Contaminantes Químicos del Agua/análisis , Estaciones del Año , Agua/análisis , Preparaciones Farmacéuticas
10.
Environ Sci Process Impacts ; 24(10): 1708-1724, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35938375

RESUMEN

Discharged wastewater treatment plant (WWTP) effluent greatly contributes to the generation of complex mixtures of contaminants of emerging concern (CECs) in aquatic environments which often contain neuropharmaceuticals and other emerging contaminants that may impact neurological function. However, there is a paucity of knowledge on the neurological impacts of these exposures to aquatic organisms. In this study, caged fathead minnows (Pimephales promelas) were exposed in situ in a temperate-region effluent-dominated stream (i.e., Muddy Creek) in Coralville, Iowa, USA upstream and downstream of a WWTP effluent outfall. The pharmaceutical composition of Muddy Creek was recently characterized by our team and revealed many compounds there were at a low microgram to high nanogram per liter concentration. Total RNA sequencing analysis on brain tissues revealed 280 gene isoforms that were significantly differentially expressed in male fish and 293 gene isoforms in female fish between the upstream and downstream site. Only 66 (13%) of such gene isoforms overlapped amongst male and female fish, demonstrating sex-dependent impacts on neuronal gene expression. By using a systems biology approach paired with functional enrichment analyses, we identified several potential novel gene biomarkers for treated effluent exposure that could be used to expand monitoring of environmental effects with respect to complex CEC mixtures. Lastly, when comparing the results of this study to those that relied on a single-compound approach, there was relatively little overlap in terms of gene-specific effects. This discovery brings into question the application of single-compound exposures in accurately characterizing environmental risks of complex mixtures and for gene biomarker identification.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Aguas Residuales/toxicidad , Aguas Residuales/análisis , RNA-Seq , Contaminantes Químicos del Agua/análisis , Cyprinidae/genética , Cyprinidae/metabolismo , Biomarcadores/metabolismo , Preparaciones Farmacéuticas
11.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34967600

RESUMEN

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Bebidas , Monitoreo del Ambiente , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
12.
Cell Rep ; 36(3): 109430, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289356

RESUMEN

While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.


Asunto(s)
Apoptosis , Linfocitos B/patología , Homeostasis , Animales , Formación de Anticuerpos/inmunología , Atrofia , Factor Activador de Células B/metabolismo , Recuento de Células , Diferenciación Celular/genética , Proliferación Celular/genética , Tamaño de la Célula , Supervivencia Celular/genética , Senescencia Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica , Ratones Noqueados , Análisis de Secuencia de ARN , Timo/inmunología , Factores de Transcripción/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34134358

RESUMEN

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Monitoreo del Ambiente , Humanos , Puerto Rico , Agua , Contaminantes Químicos del Agua/análisis
14.
Blood Adv ; 4(7): 1270-1283, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32236527

RESUMEN

In eukaryotic cells, messenger RNA (mRNA) molecules are exported from the nucleus to the cytoplasm, where they are translated. The highly conserved protein nuclear RNA export factor1 (Nxf1) is an important mediator of this process. Although studies in yeast and in human cell lines have shed light on the biochemical mechanisms of Nxf1 function, its contribution to mammalian physiology is less clear. Several groups have identified recurrent NXF1 mutations in chronic lymphocytic leukemia (CLL), placing it alongside several RNA-metabolism factors (including SF3B1, XPO, RPS15) whose dysregulation is thought to contribute to CLL pathogenesis. We report here an allelic series of germline point mutations in murine Nxf1. Mice heterozygous for these loss-of-function Nxf1 mutations exhibit thrombocytopenia and lymphopenia, together with milder hematological defects. This is primarily caused by cell-intrinsic defects in the survival of platelets and peripheral lymphocytes, which are sensitized to intrinsic apoptosis. In contrast, Nxf1 mutations have almost no effect on red blood cell homeostasis. Comparative transcriptome analysis of platelets, lymphocytes, and erythrocytes from Nxf1-mutant mice shows that, in response to impaired Nxf1 function, the cytoplasmic representation of transcripts encoding regulators of RNA metabolism is altered in a unique, lineage-specific way. Thus, blood cell lineages exhibit differential requirements for Nxf1-mediated global mRNA export.


Asunto(s)
Linfopenia , Trombocitopenia , Animales , Células Germinativas , Linfopenia/genética , Ratones , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , ARN Viral , Proteínas de Unión al ARN/genética , Trombocitopenia/genética
15.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126404

RESUMEN

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Asunto(s)
Purificación del Agua , Chicago , Agua Potable , Michigan , Plaguicidas , Estados Unidos , Contaminantes Químicos del Agua
16.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31591564

RESUMEN

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Asunto(s)
Apoptosis/fisiología , Bibliotecas de Moléculas Pequeñas/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/fisiología , Animales , Ratones , Unión Proteica , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
17.
Blood ; 132(2): 197-209, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29784641

RESUMEN

The circulating life span of blood platelets is regulated by the prosurvival protein BCL-XL It restrains the activity of BAK and BAX, the essential prodeath mediators of intrinsic apoptosis. Disabling the platelet intrinsic apoptotic pathway in mice by deleting BAK and BAX results in a doubling of platelet life span and concomitant thrombocytosis. Apoptotic platelets expose phosphatidylserine (PS) via a mechanism that is distinct from that driven by classical agonists. Whether there is any role for apoptotic PS in platelet function in vivo, however, is unclear. Apoptosis has also been associated with the platelet storage lesion (PSL), the constellation of biochemical deteriorations that occur during blood bank storage. In this study, we investigated the role of BAK/BAX-mediated apoptosis in hemostasis and thrombosis and in the development of the PSL. We show that although intrinsic apoptosis is rapidly induced during storage at 37°C, it is not detected when platelets are kept at the standard storage temperature of 22°C. Remarkably, loss of BAK and BAX did not prevent the development of the PSL at either temperature. BAK/BAX-deficient mice exhibited increased bleeding times and unstable thrombus formation. This phenotype was not caused by impaired PS exposure, but was associated with a defect in granule release from aged platelets. Strikingly, rejuvenation of BAK/BAX-deficient platelets in vivo completely rescued the observed hemostatic defects. Thus, apoptotic culling of old platelets from the bloodstream is essential to maintain a functional, hemostatically reactive platelet population. Inhibiting intrinsic apoptosis in blood banked platelets is unlikely to yield significant benefit.


Asunto(s)
Apoptosis , Plaquetas/metabolismo , Susceptibilidad a Enfermedades , Animales , Apoptosis/genética , Biomarcadores , Tiempo de Sangría , Recuento de Células Sanguíneas , Coagulación Sanguínea , Caspasas/metabolismo , Supervivencia Celular/genética , Femenino , Genotipo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
18.
Science ; 359(6378)2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29472455

RESUMEN

Mitochondrial apoptosis is mediated by BAK and BAX, two proteins that induce mitochondrial outer membrane permeabilization, leading to cytochrome c release and activation of apoptotic caspases. In the absence of active caspases, mitochondrial DNA (mtDNA) triggers the innate immune cGAS/STING pathway, causing dying cells to secrete type I interferon. How cGAS gains access to mtDNA remains unclear. We used live-cell lattice light-sheet microscopy to examine the mitochondrial network in mouse embryonic fibroblasts. We found that after BAK/BAX activation and cytochrome c loss, the mitochondrial network broke down and large BAK/BAX pores appeared in the outer membrane. These BAK/BAX macropores allowed the inner mitochondrial membrane to herniate into the cytosol, carrying with it mitochondrial matrix components, including the mitochondrial genome. Apoptotic caspases did not prevent herniation but dismantled the dying cell to suppress mtDNA-induced innate immune signaling.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Citocromos c/metabolismo , ADN Mitocondrial/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/química , Multimerización de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
19.
J Clin Invest ; 127(3): 814-829, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28134622

RESUMEN

Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea-induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage-dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.


Asunto(s)
Plaquetas/metabolismo , Genes Dominantes , Enfermedades Genéticas Congénitas , Mutación Missense , Trombocitopenia , Tropomiosina , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Mutantes , Trombocitopenia/genética , Trombocitopenia/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
20.
Genes Dev ; 30(10): 1240-50, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198225

RESUMEN

Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak.


Asunto(s)
Apoptosis/genética , Plaquetas/citología , Linfocitos T/citología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Línea Celular , Supervivencia Celular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA