Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675801

RESUMEN

To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.

2.
NPJ Vaccines ; 8(1): 116, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573454

RESUMEN

CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M158-66 epitope (GILGFVFTL) on the T-cell response. In HLA-A2*0201 transgenic mice, CPL-vaccination led to higher T-cell frequencies, but only a small percentage of the induced T cells recognized the GILG-wildtype (WT) peptide. CPL-vaccination resulted in a lower richness of the GILG-WT-specific T-cell repertoire and no improved protection against IAV-infection compared to GILG-WT peptide-vaccination. One CPL even appeared to enhance pathology after IAV-challenge. CPL-vaccination thus induces T cells not targeting the original peptide, which may lead to potential unwanted side effects.

3.
Front Immunol ; 14: 1210168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520553

RESUMEN

T cells recognize pathogens by their highly specific T-cell receptor (TCR), which can bind small fragments of an antigen presented on the Major Histocompatibility Complex (MHC). Antigens that are provided through vaccination cause specific T cells to respond by expanding and forming specific memory to combat a future infection. Quantification of this T-cell response could improve vaccine monitoring or identify individuals with a reduced ability to respond to a vaccination. In this proof-of-concept study we use longitudinal sequencing of the TCRß repertoire to quantify the response in the CD4+ memory T-cell pool upon pneumococcal conjugate vaccination. This comes with several challenges owing to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-specific TCRs in the total repertoire, and the variation in sample size and quality. We defined quantitative requirements to classify T-cell expansions and identified critical parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate vaccination, we were able to detect robust T-cell expansions in a minority of the donors, which suggests that the T-cell response against the conjugate in the pneumococcal vaccine is small and/or very broad. These results indicate that there is still a long way to go before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced protection. Nevertheless, this study highlights the importance of having multiple samples containing sufficient T-cell numbers, which will support future studies that characterize T-cell responses using longitudinal TCR sequencing.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Vacunación , Humanos , Estudios de Factibilidad , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD4-Positivos
4.
Sci Adv ; 8(50): eadc9937, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516261

RESUMEN

Universal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus. To mimic the human situation, we applied the mRNA vaccine as a prime-boost regimen in naïve ferrets (mimicking young children) and as a booster in influenza-experienced ferrets (mimicking adults). The vaccine induced and boosted broadly reactive T cells in the circulation, bone marrow, and respiratory tract. Booster vaccination enhanced protection against heterosubtypic infection with a potential pandemic H7N9 influenza virus in influenza-experienced ferrets. Our findings show that mRNA vaccines encoding internal influenza virus proteins represent a promising strategy to induce broadly protective T cell immunity against influenza viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Niño , Animales , Humanos , Preescolar , Hurones/genética , Gripe Humana/prevención & control , ARN Mensajero/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Linfocitos T
5.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34960178

RESUMEN

Waning of the mumps virus (MuV)-specific humoral response after vaccination has been suggested as a cause for recent mumps outbreaks in vaccinated young adults, although it cannot explain all cases. Moreover, CD8+ T cells may play an important role in the response against MuV; however, little is known about the characteristics and dynamics of the MuV-specific CD8+ T-cell response after MuV infection. Here, we had the opportunity to follow the CD8+ T-cell response to three recently identified HLA-A2*02:01-restricted MuV-specific epitopes from 1.5 to 36 months post-MuV infection in five previously vaccinated and three unvaccinated individuals. The infection-induced CD8+ T-cell response was dominated by T cells specific for the ALDQTDIRV and LLDSSTTRV epitopes, while the response to the GLMEGQIVSV epitope was subdominant. MuV-specific CD8+ T-cell frequencies in the blood declined between 1.5 and 9 months after infection. This decline was not explained by changes in the expression of inhibitory receptors or homing markers. Despite the ongoing changes in the frequencies and phenotype of MuV-specific CD8+ T cells, TCRß analyses revealed a stable MuV-specific T-cell repertoire over time. These insights in the maintenance of the cellular response against mumps may provide hallmarks for optimizing vaccination strategies towards a long-term cellular memory response.

6.
PLoS Pathog ; 17(12): e1010152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914799

RESUMEN

Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Memoria Inmunológica/inmunología , Infección Latente/inmunología , Anciano , Infecciones por Citomegalovirus/virología , Femenino , Humanos , Infección Latente/virología , Masculino , Persona de Mediana Edad
7.
Front Immunol ; 12: 663664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025665

RESUMEN

Latent infection with cytomegalovirus (CMV) is assumed to contribute to the age-associated decline of the immune system. CMV induces large changes in the T-cell pool and may thereby affect other immune responses. CMV is expected to impact especially older adults, who are already at higher risk of severe disease and hospitalization upon infections such as influenza virus (IAV) infection. Here, we investigated the impact of CMV infection on IAV-specific CD8+ T-cell frequencies in healthy individuals (n=96) and the response to IAV infection in older adults (n=72). IAV-specific memory T-cell frequencies were lower in healthy CMV+ older individuals compared to healthy CMV- older individuals. Upon acute IAV infection, CMV serostatus or CMV-specific antibody levels were not negatively associated with IAV-specific T-cell frequencies, function, phenotype or T-cell receptor repertoire diversity. This suggests that specific T-cell responses upon acute IAV infection are not negatively affected by CMV. In addition, we found neither an association between CMV infection and inflammatory cytokine levels in serum during acute IAV infection nor between cytokine levels and the height of the IAV-specific T-cell response upon infection. Finally, CMV infection was not associated with increased severity of influenza-related symptoms. In fact, CMV infection was even associated with increased IAV-specific T-cell responses early upon acute IAV infection. In conclusion, although associated with lower frequencies of memory IAV-specific T cells in healthy individuals, CMV infection does not seem to hamper the induction of a proper T-cell response during acute IAV infection in older adults.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Memoria Inmunológica , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Linfocitos T/inmunología , Latencia del Virus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Senescencia Celular/inmunología , Coinfección , Citocinas/sangre , Citocinas/metabolismo , Infecciones por Citomegalovirus/metabolismo , Femenino , Humanos , Gripe Humana/diagnóstico , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/metabolismo , Adulto Joven
8.
Front Aging ; 2: 665637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822032

RESUMEN

CD8+ T cells play an important role in protection against viral infections. With age, changes in the T-cell pool occur, leading to diminished responses against both new and recurring infections in older adults. This is thought to be due to a decrease in both T-cell numbers and T-cell receptor (TCR) diversity. Latent infection with cytomegalovirus (CMV) is assumed to contribute to this age-associated decline of the immune system. The observation that the level of TCR diversity in the total memory T-cell pool stays relatively stable during aging is remarkable in light of the constant input of new antigen-specific memory T cells. What happens with the diversity of the individual antigen-specific T-cell repertoires in the memory pool remains largely unknown. Here we studied the effect of aging on the phenotype and repertoire diversity of CMV-specific and Epstein-Barr virus (EBV)-specific CD8+ T cells, as well as the separate effects of aging and CMV-infection on the EBV-specific T-cell repertoire. Antigen-specific T cells against both persistent viruses showed an age-related increase in the expression of markers associated with a more differentiated phenotype, including KLRG-1, an increase in the fraction of terminally differentiated T cells, and a decrease in the diversity of the T-cell repertoire. Not only age, but also CMV infection was associated with a decreased diversity of the EBV-specific T-cell repertoire. This suggests that both CMV infection and age can impact the T-cell repertoire against other antigens.

9.
Aging Cell ; 19(11): e13262, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33078890

RESUMEN

Older adults often show signs of impaired CD8+ T-cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T-cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long-term maintenance of the antigen-specific T-cell repertoire. Here, we review the literature on the maintenance of antigen-experienced CD8+ T-cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T-cell repertoire, and the effects of age, infection history, and T-cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunación/métodos , Factores de Edad , Anciano , Humanos
10.
Med Microbiol Immunol ; 208(3-4): 365-373, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30989333

RESUMEN

Upon cytomegalovirus (CMV) infection, large T-cell responses are elicited that remain high or even increase over time, a phenomenon named memory T-cell inflation. Besides, the maintained robust T-cell response, CMV-specific T cells seem to have a distinctive phenotype, characterized by an advanced differentiation state. Here, we will review this "special" differentiation status by discussing the cellular phenotype based on the expression of CD45 isoforms, costimulatory, inhibitory and natural killer receptors, adhesion and lymphocyte homing molecules, transcription factors, cytokines and cytotoxic molecules. In addition, we focus on whether the differentiation state of CMV-specific CD8 T cells is unique in comparison with other chronic viruses and we will discuss the possible impact of factors such as antigen exposure and aging on the advanced differentiation status of CMV-specific CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Subgrupos de Linfocitos T/inmunología , Expresión Génica , Factores Inmunológicos/biosíntesis
11.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626672

RESUMEN

Mumps outbreaks among vaccinated young adults stress the need for a better understanding of mumps virus (MuV)-induced immunity. Antibody responses to MuV are well characterized, but studies on T cell responses are limited. We recently isolated a MuV-specific CD4+ T cell clone by stimulating peripheral blood mononuclear cells (PBMCs) from a mumps case with the viral nucleoprotein (MuV-N). In this study, we further explored the identity and relevance of the epitope recognized by the CD4+ T cell clone and ex vivo by T cells in a cohort of mumps cases. Using a two-dimensional matrix peptide pool of 15-mer peptides covering the complete MuV-N, we identified the epitope recognized by the T cell clone as MuV-N110-124 GTYRLIPNARANLTA, present in a well-conserved region of the viral protein. Upon peptide-specific stimulation, the T cell clone expressed the activation marker CD137 and produced gamma interferon, tumor necrosis factor, and interleukin-10 in a HLA-DR4-restricted manner. Moreover, the CD4+ T cells exerted a cytotoxic phenotype and specifically killed cells presenting MuV-N110-124 Furthermore, the identified peptide is widely applicable to the general population since it is predicted to bind various common HLA-DR molecules, and epitope-specific CD4+ T cells displaying cytotoxic/Th1-type properties were found in all tested mumps cases expressing different HLA-DR alleles. This first broadly recognized human MuV-specific CD4+ T cell epitope could provide a useful tool to detect and evaluate virus-specific T cell responses upon MuV infection or following vaccination.IMPORTANCE Recent outbreaks of mumps among vaccinated young adults have been reported worldwide. Humoral responses against mumps virus (MuV) are well characterized, although no correlate of protection has been elucidated, stressing the need to better understand cellular MuV-specific immunity. In this study, we identified the first MuV T cell epitope, which is derived from the viral nucleoprotein (MuV-N) and was recognized by a cytotoxic/Th1 CD4+ T cell clone that was isolated from a mumps case. Moreover, the epitope was predicted to bind a broad variety of common HLA-DRB1 alleles, which was confirmed by the epitope-specific cytotoxic/Th1 CD4+ T cell responses observed in multiple mumps cases with various HLA-DRB1 genotypes. The identified epitope is completely conserved among various mumps strains. These findings qualify this promiscuous MuV T cell epitope as a useful tool for further in-depth exploration of MuV-specific T cell immunity after natural mumps virus infection or induced by vaccination.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Parotiditis/inmunología , Paperas/inmunología , Nucleoproteínas/inmunología , Antígenos HLA-DR/inmunología , Humanos , Interferón gamma/inmunología , Leucocitos Mononucleares/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...