Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.082
Filtrar
1.
Commun Biol ; 7(1): 530, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704457

RESUMEN

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Asunto(s)
Endometrio , Factor de Crecimiento Placentario , Preeclampsia , Transducción de Señal , Proteína de Unión al GTP rac1 , Femenino , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Humanos , Preeclampsia/metabolismo , Embarazo , Endometrio/metabolismo , Endometrio/patología , Factor de Crecimiento Placentario/metabolismo , Factor de Crecimiento Placentario/genética , Células del Estroma/metabolismo , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Microscopía de Fuerza Atómica
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612478

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.


Asunto(s)
Neoplasias Endometriales , Regulación de la Expresión Génica , Humanos , Femenino , Ciclooxigenasa 2/genética , Neoplasias Endometriales/genética , Factores de Transcripción NFATC , Transducción de Señal , Dinoprostona , Factor V , Factores de Transcripción
3.
IUBMB Life ; 76(4): 182-199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37921568

RESUMEN

High prevalence and metastasis rates are characteristics of lung cancer. Glycolysis provides energy for the development and metastasis of cancer cells. The 1,25-dihydroxy vitamin D3 (1,25(OH)2 D3 ) has been linked to reducing cancer risk and regulates various physiological functions. We hypothesized that 1,25(OH)2 D3 could be associated with the expression and activity of Na+ /H+ exchanger isoform 1 (NHE1) of Lewis lung cancer cells, thus regulating glycolysis as well as migration by actin reorganization. Followed by online public data analysis, Vitamin D3 receptor, the receptor of 1,25(OH)2 D3 has been proved to be abundant in lung cancers. We demonstrated that 1,25(OH)2 D3 treatment suppressed transcript levels, protein levels, and activity of NHE1 in LLC cells. Furthermore, 1,25(OH)2 D3 treatment resets the metabolic balance between glycolysis and OXPHOS, mainly including reducing glycolytic enzymes expression and lactate production. In vivo experiments showed the inhibition effects on tumor growth as well. Therefore, we concluded that 1,25(OH)2 D3 could amend the NHE1 function, which leads to metabolic reprogramming and cytoskeleton reconstruction, finally inhibits the cell migration.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Movimiento Celular
4.
Mol Neurodegener ; 18(1): 44, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403161

RESUMEN

BACKGROUND: Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (commensal) microbiome can regulate α-Syn accumulation, as this could potentially lead to PD. METHODS: We used 16S rRNA and shotgun sequencing to characterise microbial diversity. 1H-NMR was employed to understand the metabolite production and intestinal inflammation estimated using ELISA and RNA-sequencing from feces and the intestinal epithelial layer respectively. The Na+ channel current and gut permeability were measured using an Ussing chamber. Immunohistochemistry and immunofluorescence imaging were applied to detect the α-Syn protein. LC-MS/MS was used for characterization of proteins from metabolite treated neuronal cells. Finally, Metascape and Ingenuity Pathway Analysis (IPA) bioinformatics tools were used for identification of dysregulated pathways. RESULTS: We studied a transgenic (TG) rat model overexpressing the human SNCA gene and found that a progressive gut microbial composition alteration characterized by the reduction of Firmicutes to Bacteroidetes ratio could be detected in the young TG rats. Interestingly, this ratio then increased with ageing. The dynamics of Lactobacillus and Alistipes were monitored and reduced Lactobacillus and increased Alistipes abundance was discerned in ageing TG rats. Additionally, the SNCA gene overexpression resulted in gut α-Syn protein expression and increased with advanced age. Further, older TG animals had increased intestinal inflammation, decreased Na+ current and a robust alteration in metabolite production characterized by the increase of succinate levels in feces and serum. Manipulation of the gut bacteria by short-term antibiotic cocktail treatment revealed a complete loss of short-chain fatty acids and a reduction in succinate levels. Although antibiotic cocktail treatment did not change α-Syn expression in the enteric nervous system of the colon, however, reduced α-Syn expression was detected in the olfactory bulbs (forebrain) of the TG rats. CONCLUSION: Our data emphasize that the gut microbiome dysbiosis synchronous with ageing leads to a specific alteration of gut metabolites and can be modulated by antibiotics which may affect PD pathology.


Asunto(s)
Microbiota , Enfermedad de Parkinson , Humanos , Ratas , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Cromatografía Liquida , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Envejecimiento , Animales Modificados Genéticamente , Inflamación , Antibacterianos
5.
Cell Cycle ; 22(17): 1827-1853, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522842

RESUMEN

Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.


Asunto(s)
Eriptosis , Donantes de Óxido Nítrico , Humanos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Nitroprusiato/farmacología , Nitroprusiato/metabolismo , Calcio/metabolismo , Acetilcisteína/farmacología , Desipramina/farmacología , Desipramina/metabolismo , Eritrocitos/metabolismo , Glutatión/metabolismo , Glutatión/farmacología , Anexinas/metabolismo , Anexinas/farmacología , Fosfatidilserinas/metabolismo , Tamaño de la Célula , Ceramidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
6.
Paracelsus Proc Exp Med ; 2(1): 41-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304678

RESUMEN

Background/Aims: Cells adapt to chronic extracellular hypotonicity by altering metabolism. Corresponding effects of sustained hypotonic exposure at the whole-person level remain to be confirmed and characterized in clinical and population-based studies. This analysis aimed to 1) describe changes in urine and serum metabolomic profiles associated with four weeks of sustained > +1 L/d drinking water in healthy, normal weight, young men, 2) identify metabolic pathways potentially impacted by chronic hypotonicity, and 3) explore if effects of chronic hypotonicity differ by type of specimen and/or acute hydration condition. Materials: Untargeted metabolomic assays were completed for specimen stored from Week 1 and Week 6 of the Adapt Study for four men (20-25 years) who changed hydration classification during that period. Each week, first-morning urine was collected after overnight food and water restriction, and urine (t+60 min) and serum (t+90 min) were collected after a 750 mL bolus of drinking water. Metaboanalyst 5.0 was used to compare metabolomic profiles. Results: In association with four weeks of > + 1 L/d drinking water, urine osmolality decreased below 800 mOsm/kg H2O and saliva osmolality decreased below 100 mOsm/kg H2O. Between Week 1 and Week 6, 325 of 562 metabolic features in serum changed by 2-fold or more relative to creatinine. Based on hypergeometric test p-value <0.05 or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway impact factor >0.2, the sustained > + 1 L/d of drinking water was associated with concurrent changes in carbohydrate, protein, lipid, and micronutrient metabolism, a metabolomic pattern of carbohydrate oxidation via the tricarboxylic acid (TCA) cycle, instead of glycolysis to lactate, and a reduction of chronic disease risk factors in Week 6. Similar metabolic pathways appeared potentially impacted in urine, but the directions of impact differed by specimen type. Conclusion: In healthy, normal weight, young men with initial total water intake below 2 L/d, sustained > + 1 L/d drinking water was associated with profound changes in serum and urine metabolomic profile, which suggested normalization of an aestivation-like metabolic pattern and a switch away from a Warburg-like pattern. Further research is warranted to pursue whole-body effects of chronic hypotonicity that reflect cell-level effects and potential beneficial effects of drinking water on chronic disease risk.

7.
J Thromb Haemost ; 21(7): 1957-1966, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054918

RESUMEN

BACKGROUND: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca2+) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca2+ are key players in the complex orchestration of platelet activation. OBJECTIVES: The present study aimed to determine the impact of NPC1 on Ca2+ mobilization during platelet activation in thrombo-occlusive diseases. METHODS: Using MK/platelet-specific knockout mice of Npc1 (Npc1Pf4∆/Pf4∆), ex vivo and in vitro approaches as well as in vivo models of thrombosis, we investigated the effect of Npc1 on platelet function and thrombus formation. RESULTS: We showed that Npc1Pf4∆/Pf4∆ platelets display increased sphingosine levels and a locally impaired membrane-associated and SERCA3-dependent Ca2+ mobilisation compared to platelets from wildtype littermates (Npc1lox/lox). Further, we observed decreased platelet. CONCLUSION: Our findings highlight that NPC1 regulates membrane-associated and SERCA3-dependent Ca2+ mobilization during platelet activation and that MK/platelet-specific ablation of Npc1 protects against experimental models of arterial thrombosis and myocardial or cerebral ischemia/reperfusion injury.


Asunto(s)
Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C , Ratones , Animales , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Ratones Noqueados
8.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36891903

RESUMEN

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Ratones , Animales , Plaquetas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Remodelación Ventricular , Daño por Reperfusión Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Infarto del Miocardio/patología , Enfermedad de la Arteria Coronaria/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad
9.
Mol Biol Rep ; 50(5): 4253-4260, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905403

RESUMEN

BACKGROUND: Myricetin, a type of flavonol commonly found in fruits and herbs, has demonstrated anticancer properties by triggering the process of apoptosis or programmed cell death in tumor cells. Despite the absence of mitochondria and nuclei, erythrocytes can undergo programmed cell death, also known as eryptosis.This process is characterized by cell shrinkage, externalization of phosphatidylserine (PS) on the cell membrane, and the formation of membrane blebs. The signaling of eryptosis involves Ca2+ influx, the formation of reactive oxygen species (ROS), and the accumulation of cell surface ceramide. The present study explored the effects of myricetin on eryptosis. METHODS AND RESULTS: Human erythrocytes were exposed to various concentrations of myricetin (2-8 µM) for 24 h. Flow cytometry was used to assess the markers of eryptosis, including PS exposure, cellular volume, cytosolic Ca2+ concentration, and ceramide accumulation. In addition, the levels of intracellular ROS were measured using the 2',7'-dichlorofluorescin diacetate (DCFDA) assay. The myricetin-treated (8 µM) erythrocytes significantly increased Annexin-positive cells, Fluo-3 fluorescence intensity, DCF fluorescence intensity, and the accumulation of ceramide. The impact of myricetin on the binding of annexin-V was significantly reduced, but not completely eliminated, by the nominal removal of extracellular Ca2+. CONCLUSION: Myricetin triggers eryptosis, which is accompanied and, at least in part, caused by Ca2+ influx, oxidative stress and increase of ceramide abundance.


Asunto(s)
Eriptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Eritrocitos/metabolismo , Ceramidas , Anexinas/metabolismo , Anexinas/farmacología , Calcio/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , Tamaño de la Célula , Hemólisis
10.
Wien Med Wochenschr ; 173(5-6): 152-157, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36178637

RESUMEN

BI2536 is potent inhibitor of polo-like kinases PLK1, 2, and 3. The inhibition of PLKs in nucleated cells induces apoptosis by perturbing the cell cycle with consequent engagement of mitotic catastrophe. BI2536 is being tested as chemotherapy in various phase I/II/III clinical trials. Erythrocytes do not have a nucleus; however, they may undergo programmed suicide with characteristic hallmarks including cell shrinkage and phosphatidylserine translocation to the cell surface. This particular death is baptized eryptosis. Our study explored whether BI2536 induces eryptosis. We used flow cytometry to access death in red blood cells. We analyzed the cellular volume, the intracellular calcium concentration, the cell surface phosphatidylserine exposure, and the ceramide abundance. In addition, we analyzed the effect of BI2536 on hemolysis. Our investigation showed that after 48 h of incubation with PLK inhibitor BI2536, erythrocytes lost volume and were positive for annexin­V without any effect on hemolysis. Cells also showed an abundance of ceramide and an increase of intracellular calcium. All these finding suggest that BI2536 provokes eryptosis in red blood cells, ostensibly in part due to Ca2+ entry and ceramide accumulation.


Asunto(s)
Eritrocitos , Proteínas Serina-Treonina Quinasas , Pteridinas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Humanos , Eritrocitos/química , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eriptosis/efectos de los fármacos , Pteridinas/farmacología , Ceramidas/análisis , Calcio/análisis , Hemólisis/efectos de los fármacos
11.
Biology (Basel) ; 11(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453745

RESUMEN

Euthanasia in zebrafish (Danio rerio) younger than 5 days post fertilization (dpf) is poorly described in the literature, and standardized protocols are lacking, most likely because larvae not capable of independent feeding are often not protected under national legislations. We assessed the euthanasia efficacy in laboratories in different countries of a one hour anesthetic overdose immersion with buffered lidocaine hydrochloride (1 g/L, with or without 50 mL/L of ethanol), buffered tricaine (1 g/L), clove oil (0.1%), benzocaine (1 g/L), or 2-phenoxyethanol (3 mL/L), as well as the efficacy of hypothermic shock (one hour immersion) and electrical stunning (for one minute), on zebrafish at <12 h post fertilization (hpf), 24 hpf, and 4 dpf. Based on the survival/recovery rates 24 h after treatment, the most effective methods were clove oil, lidocaine with ethanol, and electrical stunning. For 4 dpf larvae, signs of aversion during treatment demonstrated that all anesthetics, except lidocaine, induced aversive behavior. Therefore, the most suited euthanasic treatment was lidocaine hydrochloride 1 g/L, buffered with 2 g/L of sodium bicarbonate and mixed with 50 mL/L of ethanol, which euthanized both embryos and larvae in an efficient and stress-free manner. Electrical stunning also euthanized embryos and larvae efficiently and without signs of aversion; this method needs further assessment in other laboratories to draw firm conclusions.

12.
Cells ; 11(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326379

RESUMEN

Bone-marrow-derived mast cells are matured from bone marrow cells in medium containing 20% fetal calf serum (FCS), interleukin (IL)-3 and stem-cell factor (SCF) and are used as in vitro models to study mast cells (MC) and their role in health and disease. In vivo, however, BM-derived hematopoietic stem cells account for only a fraction of MC; the majority of MC in vivo are and remain tissue resident. In this study we established a side-by-side culture with BMMC, fetal skin MC (FSMC) or fetal liver MC (FLMC) for comparative studies to identify the best surrogates for mature connective tissue MC (CTMC). All three MC types showed comparable morphology by histology and MC phenotype by flow cytometry. Heterogeneity was detected in the transcriptome with the most differentially expressed genes in FSMC compared to BMMC being Hdc and Tpsb2. Expression of ST2 was highly expressed in BMMC and FSMC and reduced in FLMC, diminishing their secretion of type 2 cytokines. Higher granule content, stronger response to FcεRI activation and significantly higher release of histamine from FSMC compared to FLMC and BMMC indicated differences in MC development in vitro dependent on the tissue of origin. Thus, tissues of origin imprint MC precursor cells to acquire distinct phenotypes and signatures despite identical culture conditions. Fetal-derived MC resemble mature CTMC, with FSMC being the most developed.


Asunto(s)
Células del Tejido Conectivo , Mastocitos , Células Cultivadas , Tejido Conectivo , Feto , Mastocitos/metabolismo
13.
Kidney Blood Press Res ; 47(6): 399-409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35339998

RESUMEN

BACKGROUND/AIMS: Vasopressin is a powerful stimulator of vascular calcification, augmenting osteogenic signaling in vascular smooth muscle cells (VSMCs) including upregulation of transcription factors such as core-binding factor α-1 (CBFA1), msh homeobox 2 (MSX2), and SRY-Box 9 (SOX9), as well as of tissue-nonspecific alkaline phosphatase (ALPL). Vasopressin-induced osteogenic signaling and calcification require the serum- and glucocorticoid-inducible kinase 1 (SGK1). Known effects of SGK1 include upregulation of Na+/H+ exchanger 1 (NHE1). NHE1 further participates in the regulation of reactive oxygen species (ROS). NHE1 has been shown to participate in the orchestration of bone mineralization. The present study, thus, explored whether vasopressin modifies NHE1 expression and ROS generation, as well as whether pharmacological inhibition of NHE1 disrupts vasopressin-induced osteogenic signaling and calcification in VSMCs. METHODS: Human aortic smooth muscle cells (HAoSMCs) were treated with vasopressin in the absence or presence of SGK1 silencing, SGK1 inhibitor GSK-650394, and NHE1 blocker cariporide. Transcript levels were determined by using quantitative real-time polymerase chain reaction, protein abundance by Western blotting, ROS generation with 2',7'-dichlorofluorescein diacetate fluorescence, and ALP activity and calcium content by using colorimetric assays. RESULTS: Vasopressin significantly enhanced the NHE1 transcript and protein levels in HAoSMCs, effects significantly blunted by SGK1 inhibition with GSK-650394 or SGK1 silencing. Vasopressin increased ROS accumulation, an effect significantly blocked by the NHE1 inhibitor cariporide. Vasopressin further significantly increased osteogenic markers CBFA1, MSX2, SOX9, and ALPL transcript levels, as well as ALP activity and calcium content in HAoSMCs, all effects significantly blunted by SGK1 silencing or in the presence of GSK-650394 or cariporide. CONCLUSION: Vasopressin stimulates NHE1 expression and ROS generation, an effect dependent on SGK1 and required for vasopressin-induced stimulation of osteogenic signaling and calcification of VSMCs.


Asunto(s)
Calcificación Fisiológica , Calcificación Vascular , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos del Músculo Liso , Especies Reactivas de Oxígeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Calcificación Vascular/metabolismo , Vasopresinas/metabolismo
14.
Int. arch. otorhinolaryngol. (Impr.) ; 26(1): 125-131, Jan.-Mar. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1364917

RESUMEN

Abstract Introduction All patients with a new head and neck squamous cell carcinoma (HNSCC) undergo diagnostic panendoscopy as part of the screening for synchronous second primary tumors. It includes a pharyngolaryngoscopy (PLS), a tracheobronchoscopy and esophagoscopy, and a stomatoscopy. Rigid techniques are risky, with long learning curves. Objective We propose a precise description of the panendoscopy protocol. We include an optimization of the PLS technique that completes the flexible esophagoscopy when rigid esophagoscopy isn't performed. Methods The present retrospective observational study includes 122 consecutive patients with a new primary HNSCC who underwent traditional panendoscopy and the new PLS technique between January 2014 and December 2016. A two-step procedure using a Macintosh laryngoscope and a 30° telescope first exposes panoramically the larynx, the upper trachea, and the oropharynx; then, in a second step, the hypopharynx is exposed down to the upper esophageal sphincter. Broncho-esophagoscopy is performed with a rigid and flexible scope. Results In total, 6 (5%) patients presented synchronous tumors (3 in the esophagus, 2 in the oral cavity, and 1 in the larynx 1). Rigid endoscopy was complicated by 2 (1,6%) dental lesions, and had to be completed with a flexible scope in 38 (33%) cases for exposition reasons. The two-step PLS offered a wide-angle view of the larynx, upper trachea, and oroand hypopharynx down to the sphincter of the upper esophagus. The procedure was easy, reliable, safe, repeatable, and effectively completed the flexible endoscopies. Conclusion Rigid esophagoscopy remains a difficult procedure. Two-step PLS combined with flexible broncho-esophagoscopy offers good optical control.

15.
Int Arch Otorhinolaryngol ; 26(1): e125-e131, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35096169

RESUMEN

Introduction All patients with a new head and neck squamous cell carcinoma (HNSCC) undergo diagnostic panendoscopy as part of the screening for synchronous second primary tumors. It includes a pharyngolaryngoscopy (PLS), a tracheobronchoscopy and esophagoscopy, and a stomatoscopy. Rigid techniques are risky, with long learning curves. Objective We propose a precise description of the panendoscopy protocol. We include an optimization of the PLS technique that completes the flexible esophagoscopy when rigid esophagoscopy isn't performed. Methods The present retrospective observational study includes 122 consecutive patients with a new primary HNSCC who underwent traditional panendoscopy and the new PLS technique between January 2014 and December 2016. A two-step procedure using a Macintosh laryngoscope and a 30° telescope first exposes panoramically the larynx, the upper trachea, and the oropharynx; then, in a second step, the hypopharynx is exposed down to the upper esophageal sphincter. Broncho-esophagoscopy is performed with a rigid and flexible scope. Results In total, 6 (5%) patients presented synchronous tumors (3 in the esophagus, 2 in the oral cavity, and 1 in the larynx 1). Rigid endoscopy was complicated by 2 (1,6%) dental lesions, and had to be completed with a flexible scope in 38 (33%) cases for exposition reasons. The two-step PLS offered a wide-angle view of the larynx, upper trachea, and oro- and hypopharynx down to the sphincter of the upper esophagus. The procedure was easy, reliable, safe, repeatable, and effectively completed the flexible endoscopies. Conclusion Rigid esophagoscopy remains a difficult procedure. Two-step PLS combined with flexible broncho-esophagoscopy offers good optical control.

16.
J Microsc ; 286(2): 120-125, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34664277

RESUMEN

Carbonated wollastonite clinker (CS) may be suitable as supplementary cementitious material (SCM) for mortar and concrete. The microstructure of unground CS clinker, carbonated CS slurry and a mortar blended with carbonated CS are investigated by scanning electron microscopy. Additionally, a reference mortar with pure Portland cement and one with a cement replacement level of 30 mass-% by carbonated CS are produced to assess its contribution to compressive strength development. The calcium silicates are decalcified during carbonation resulting in CaCO3 and amorphous SiO2 . The latter reacts when used as SCM in mortar influencing the Ca/Si ratio of calcium-silicate-hydrate and contributing to compressive strength development.


Asunto(s)
Calcio , Dióxido de Silicio , Compuestos de Calcio/química , Silicatos/química
17.
Cells ; 10(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34831306

RESUMEN

In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.


Asunto(s)
Glucosa/toxicidad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Osteogénesis/efectos de los fármacos , Zinc/farmacología , Aorta/patología , Biomarcadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Biochem Biophys Res Commun ; 582: 28-34, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34678593

RESUMEN

BACKGROUND: Vascular calcification is common in chronic kidney disease (CKD) and associated with increased cardiovascular mortality. Aldosterone has been implicated as an augmenting factor in the progression of vascular calcification. The present study further explored putative beneficial effects of aldosterone inhibition by the mineralocorticoid receptor antagonist spironolactone on vascular calcification in CKD. METHODS: Serum calcification propensity was determined in serum samples from the MiREnDa trial, a prospective, randomized controlled clinical trial to investigate efficacy and safety of spironolactone in maintenance hemodialysis patients. Experiments were conducted in mice with subtotal nephrectomy and cholecalciferol treatment, and in calcifying primary human aortic smooth muscle cells (HAoSMCs). RESULTS: Serum calcification propensity was improved by spironolactone treatment in patients on hemodialysis from the MiREnDa trial. In mouse models and HAoSMCs, spironolactone treatment ameliorated vascular calcification and expression of osteogenic markers. CONCLUSIONS: These observations support a putative benefit of spironolactone treatment in CKD-associated vascular calcification. Further research is required to investigate possible improvements in cardiovascular outcomes by spironolactone and whether the benefits outweigh the risks in patients with CKD.


Asunto(s)
Aldosterona/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Diálisis Renal , Insuficiencia Renal Crónica/tratamiento farmacológico , Espironolactona/farmacología , Calcificación Vascular/tratamiento farmacológico , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Biomarcadores/metabolismo , Colecalciferol/administración & dosificación , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/cirugía , Ratones , Ratones Endogámicos DBA , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Nefrectomía/métodos , Cultivo Primario de Células , Estudios Prospectivos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
19.
Pflugers Arch ; 473(12): 1899-1910, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564739

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and ß-adrenergic receptors. The present study explored the effects of ß2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. ß2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of ß2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.


Asunto(s)
Adrenérgicos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología , Calcificación Vascular/metabolismo , Aorta/metabolismo , Calcio/metabolismo , Transdiferenciación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo
20.
Biology (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439949

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Accumulating evidence demonstrates that alpha-synuclein (α-Syn), an apparently predominant neuronal protein, is a major contributor to PD pathology. As α-Syn is also highly abundant in blood, particularly in red blood cells (RBCs) and platelets, this in turn raises the question on the function of presumably dysfunctional α-Syn in "peripheral" cells and its putative effect on the other enclosed constituents. Herein, we detected the internal variance in erythrocytes of PD patients by Raman spectroscopy, but no measurable amount of erythrocytic behavioural change (eryptosis) or any haemoglobin variation was noticed. An elevated level of plasmin-antiplasmin complexes (PAP) was observed in the plasma of PD patients, indicating activation of the fibrinolytic system, but platelet activation after thrombin stimulation was not altered. Sex-specific patterns were noticed for blood coagulation factor XIII and factor XII activity in PD patients. Additionally, the alterations in homocysteine levels which have often been observed in PD patients were found to be independent from L-DOPA usage and PAP levels. Furthermore, a selective gene expression analysis identified subsets of genes related to different blood-associated compartments (RBCs, platelets, coagulation-fibrinolysis) also involved in PD-related pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...