Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Neurosci Res ; 99(6): 1632-1645, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33638209

RESUMEN

The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.


Asunto(s)
Lateralidad Funcional/genética , Habénula/fisiología , Animales , Animales Modificados Genéticamente , Mapeo Cromosómico , Regulación de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Larva , Microscopía Confocal , ARN/metabolismo , Pez Cebra , Proteínas de Pez Cebra
2.
J Proteome Res ; 17(5): 1967-1977, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29634277

RESUMEN

C-terminal polylysine (PL) can be synthesized from the polyadenine tail of prematurely cleaved mRNAs or when a read-though of a stop codon happens. Due to the highly positive charge, PL stalls in the electrostatically negative ribosomal exit channel. The stalled polypeptide recruits the Ribosome-associated quality control (RQC) complex which processes and extracts the nascent chain. Dysfunction of the RQC leads to the accumulation of PL-tagged proteins, induction of a stress response, and cellular toxicity. Not much is known about the PL-specific aspect of protein quality control. Using quantitative mass spectrometry, we uncovered the post-ribosomal PL-processing machinery in human cytosol. It encompasses key cytosolic complexes of the proteostasis network, such as chaperonin TCP-1 ring complexes (TRiC) and half-capped 19S-20S proteasomes. Furthermore, we found that the nuclear transport machinery associates with PL, which suggests a novel mechanism by which faulty proteins can be compartmentalized in the cell. The enhanced nuclear import of a PL-tagged polypeptide confirmed this implication, which leads to questions regarding the biological rationale behind it.


Asunto(s)
Transporte Activo de Núcleo Celular , Polilisina/fisiología , Proteostasis , Chaperonina con TCP-1 , Citosol/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas , Polilisina/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Ribosomas , Electricidad Estática
3.
Elife ; 62017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091030

RESUMEN

Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function).


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteostasis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Ratones
4.
Proc Natl Acad Sci U S A ; 113(43): 12156-12161, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27733512

RESUMEN

Protein biogenesis is tightly linked to protein quality control (PQC). The role of PQC machinery in recognizing faulty polypeptides is becoming increasingly understood. Molecular chaperones and cytosolic and vacuolar degradation systems collaborate to detect, repair, or hydrolyze mutant, damaged, and mislocalized proteins. On the other hand, the contribution of PQC to cofactor binding-related enzyme maturation remains largely unexplored, although the loading of a cofactor represents an all-or-nothing transition in regard to the enzymatic function and thus must be surveyed carefully. Combining proteomics and biochemical analysis, we demonstrate here that cells are able to detect functionally immature wild-type enzymes. We show that PQC-dedicated ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP) recognizes and marks for degradation not only a mutant protein but also its wild-type variant as long as the latter remains cofactor free. A distinct structural feature, the protruding C-terminal tail, which appears in both the mutant and wild-type polypeptides, contributes to recognition by CHIP. Our data suggest that relative insufficiency of apoprotein degradation caused by cofactor shortage can increase amyloidogenesis and aggravate protein aggregation disorders.


Asunto(s)
Coenzimas/deficiencia , Flavoproteínas/química , Proteínas HSP70 de Choque Térmico/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/química , Riboflavina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Coenzimas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Melanoma Experimental , Ratones , Modelos Moleculares , NAD/química , NAD/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Agregado de Proteínas , Estructura Secundaria de Proteína , Proteolisis , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Riboflavina/química , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...