Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(1): 358-381, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36519207

RESUMEN

We explored the protection of mangiferin monosodium salt (MGM) on kidney injury in rats with streptozotocin (STZ)-induced diabetic nephropathy (DN) by "multiomics" analysis combined with systems pharmacology, with a specific focus on ferroptosis, inflammation, and podocyte insulin resistance (IR) signaling events in kidneys. MGM treatment afforded renoprotective effects on rats with STZ-induced DN by alleviating systemic IR-induced renal inflammation and podocyte IR. These mechanisms were correlated mainly with the MGM treatment-induced inhibition of the mitogen-activated protein kinase/nuclear factor-kappa B axis and activation of the phosphorylated insulin receptor substrate 1(Tyr608)/phosphorylated phosphatidylinositol 3-kinase/phosphorylated protein kinase B axis in the kidneys of DN rats. MGM had an ameliorative function in renal ferroptosis in rats with STZ-induced DN by upregulating mevalonate-mediated antioxidant capacities (glutathione peroxidase 4 and ferroptosis suppressor protein 1/coenzyme Q10 axis) and weakening acyl-CoA synthetase long-chain family member 4-mediated proferroptotic generation of lipid drivers in kidneys. MGM may be a promising alternative strategy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Resistencia a la Insulina , Podocitos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Farmacología en Red , Multiómica , Riñón/metabolismo , Estreptozocina/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Diabetes Mellitus/metabolismo
2.
Food Funct ; 13(16): 8436-8464, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35861207

RESUMEN

Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, respectively. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/ß-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theoretical basis for the clinical application of PB2 against NS.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Podocitos , Animales , Antioxidantes/metabolismo , Apoptosis , Biflavonoides , Catequina , Doxorrubicina/toxicidad , Electrólitos/efectos adversos , Electrólitos/metabolismo , Enfermedades Renales/metabolismo , Lípidos/farmacología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Podocitos/metabolismo , Proantocianidinas , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...