Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reg Environ Change ; 21(2): 33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776560

RESUMEN

Wetlands are critically important for biodiversity and human wellbeing, but face a range of challenges. This is especially true in the Mediterranean region, where wetlands support endemic and threatened species and remain integral to human societies, but have been severely degraded in recent decades. Here, in order to raise awareness of future challenges and opportunities for Mediterranean wetlands, and to inform proactive research and management, we identified (a) 50 key issues that might affect Mediterranean wetlands between 2020 and 2050, and (b) 50 important research questions that, if answered, would have the greatest impact on the conservation of Mediterranean wetlands between 2020 and 2050. We gathered ideas through an online survey and review of recent literature. A diverse assessment panel prioritised ideas through an iterative, anonymised, Delphi-like process of scoring, voting and discussion. The prioritised issues included some that are already well known but likely to have a large impact on Mediterranean wetlands in the next 30 years (e.g. the accumulation of dams and reservoirs, plastic pollution and weak governance), and some that are currently overlooked in the context of Mediterranean wetlands (e.g. increasing desalination capacity and development of antimicrobial resistance). Questions largely focused on how best to carry out conservation interventions, or understanding the impacts of threats to inform conservation decision-making. This analysis will support research, policy and practice related to environmental conservation and sustainable development in the Mediterranean, and provides a model for similar analyses elsewhere in the world. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-020-01743-1.

2.
Water Sci Technol ; 66(3): 635-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22744696

RESUMEN

Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.


Asunto(s)
Ciudades/estadística & datos numéricos , Modelos Teóricos , Movimientos del Agua , Abastecimiento de Agua/estadística & datos numéricos , Chipre , Agua Potable , Ciclo Hidrológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...