Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826291

RESUMEN

PARP1 and PARP2 recognize DNA breaks immediately upon their formation, generate a burst of local PARylation to signal their location, and are co-targeted by all current FDA-approved forms of PARP inhibitors (PARPi) used in the cancer clinic. Recent evidence indicates that the same PARPi molecules impact PARP2 differently from PARP1, raising the possibility that allosteric activation may also differ. We find that unlike for PARP1, destabilization of the autoinhibitory domain of PARP2 is insufficient for DNA damage-induced catalytic activation. Rather, PARP2 activation requires further unfolding of an active site α-helix absent in PARP1. Only one clinical PARPi, Olaparib, stabilizes the PARP2 active site α-helix, representing a structural feature with the potential to discriminate small molecule inhibitors. Collectively, our findings reveal unanticipated differences in local structure and changes in activation-coupled backbone dynamics between PARP1 and PARP2.

2.
Sci Adv ; 9(12): eadf7175, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961901

RESUMEN

PARP1 and PARP2 detect DNA breaks, which activates their catalytic production of poly(ADP-ribose) that recruits repair factors and contributes to PARP1/2 release from DNA. PARP inhibitors (PARPi) are used in cancer treatment and target PARP1/2 catalytic activity, interfering with repair and increasing PARP1/2 persistence on DNA damage. In addition, certain PARPi exert allosteric effects that increase PARP1 retention on DNA. However, no clinical PARPi exhibit this allosteric behavior toward PARP1. In contrast, we show that certain clinical PARPi exhibit an allosteric effect that retains PARP2 on DNA breaks in a manner that depends on communication between the catalytic and DNA binding regions. Using a PARP2 mutant that mimics an allosteric inhibitor effect, we observed increased PARP2 retention at cellular damage sites. The PARPi AZD5305 also exhibited a clear reverse allosteric effect on PARP2. Our results can help explain the toxicity of clinical PARPi and suggest ways to improve PARPi moving forward.


Asunto(s)
Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ADN/metabolismo , Reparación del ADN , Daño del ADN
3.
Cell Chem Biol ; 29(12): 1694-1708.e10, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493759

RESUMEN

Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Regulación Alostérica , NAD/metabolismo , Antineoplásicos/farmacología , Sitios de Unión
4.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806109

RESUMEN

Human poly(ADP)-ribose polymerase-1 (PARP1) is a global regulator of various cellular processes, from DNA repair to gene expression. The underlying mechanism of PARP1 action during transcription remains unclear. Herein, we have studied the role of human PARP1 during transcription through nucleosomes by RNA polymerase II (Pol II) in vitro. PARP1 strongly facilitates transcription through mononucleosomes by Pol II and displacement of core histones in the presence of NAD+ during transcription, and its NAD+-dependent catalytic activity is essential for this process. Kinetic analysis suggests that PARP1 facilitates formation of "open" complexes containing nucleosomal DNA partially uncoiled from the octamer and allowing Pol II progression along nucleosomal DNA. Anti-cancer drug and PARP1 catalytic inhibitor olaparib strongly represses PARP1-dependent transcription. The data suggest that the negative charge on protein(s) poly(ADP)-ribosylated by PARP1 interact with positively charged DNA-binding surfaces of histones transiently exposed during transcription, facilitating transcription through chromatin and transcription-dependent histone displacement/exchange.


Asunto(s)
Histonas , Nucleosomas , Adenosina Difosfato , ADN/química , Histonas/metabolismo , Humanos , Cinética , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transcripción Genética
5.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830005

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in DNA repair, chromatin organization and transcription. During transcription initiation, PARP1 interacts with gene promoters where it binds to nucleosomes, replaces linker histone H1 and participates in gene regulation. However, the mechanisms of PARP1-nucleosome interaction remain unknown. Here, using spFRET microscopy, molecular dynamics and biochemical approaches we identified several different PARP1-nucleosome complexes and two types of PARP1 binding to mononucleosomes: at DNA ends and end-independent. Two or three molecules of PARP1 can bind to a nucleosome depending on the presence of linker DNA and can induce reorganization of the entire nucleosome that is independent of catalytic activity of PARP1. Nucleosome reorganization depends upon binding of PARP1 to nucleosomal DNA, likely near the binding site of linker histone H1. The data suggest that PARP1 can induce the formation of an alternative nucleosome state that is likely involved in gene regulation and DNA repair.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Nucleosomas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Reparación del ADN/genética , Regulación de la Expresión Génica/genética , Histonas/genética , Humanos , Simulación de Dinámica Molecular , Regiones Promotoras Genéticas/genética
6.
Nat Commun ; 12(1): 6675, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795260

RESUMEN

PARP1 and PARP2 produce poly(ADP-ribose) in response to DNA breaks. HPF1 regulates PARP1/2 catalytic output, most notably permitting serine modification with ADP-ribose. However, PARP1 is substantially more abundant in cells than HPF1, challenging whether HPF1 can pervasively modulate PARP1. Here, we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates/dissociates from multiple PARP1 molecules, initiating serine modification before modification initiates on glutamate/aspartate, and accelerating initiation to be more comparable to elongation reactions forming poly(ADP-ribose). This "hit and run" mechanism ensures HPF1 contributions to PARP1/2 during initiation do not persist and interfere with PAR chain elongation. We provide structural insights into HPF1/PARP1 assembled on a DNA break, and assess HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of serine-ADP-ribose modification in cells and the efficiency of serine-ADP-ribose modification required for an acute DNA damage response.


Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa/metabolismo , Proteínas Portadoras/metabolismo , Daño del ADN , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Western Blotting , Proteínas Portadoras/genética , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Mutación , Proteínas Nucleares/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica
7.
Mol Cell ; 81(4): 784-800.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33412112

RESUMEN

DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína-Arginina N-Metiltransferasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
8.
Nucleic Acids Res ; 49(4): 2266-2288, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33511412

RESUMEN

PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1's F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals for assembly of DNA repair components. A key component in transmission of the allosteric signal is the HD subdomain of CAT, which alone bridges between the assembled DNA-binding domains and the active site in the ART subdomain of CAT. Here we present a study of isolated CAT domain from human PARP-1, using NMR-based dynamics experiments to analyse WT apo-protein as well as a set of inhibitor complexes (with veliparib, olaparib, talazoparib and EB-47) and point mutants (L713F, L765A and L765F), together with new crystal structures of the free CAT domain and inhibitor complexes. Variations in both dynamics and structures amongst these species point to a model for full-length PARP-1 activation where first DNA binding and then substrate interaction successively destabilise the folded structure of the HD subdomain to the point where its steric blockade of the active site is released and PAR synthesis can proceed.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/química , Regulación Alostérica , Amidas/química , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , Activación Enzimática , Modelos Moleculares , Mutación , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Dominios Proteicos
9.
Nucleic Acids Res ; 48(17): 9694-9709, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890402

RESUMEN

DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Reparación del ADN/fisiología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Indazoles/farmacología , Cinética , Imagen Molecular , NAD/metabolismo , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
10.
Science ; 368(6486)2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32241924

RESUMEN

The success of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors (PARPi) to treat cancer relates to their ability to trap PARP-1 at the site of a DNA break. Although different forms of PARPi all target the catalytic center of the enzyme, they have variable abilities to trap PARP-1. We found that several structurally distinct PARPi drive PARP-1 allostery to promote release from a DNA break. Other inhibitors drive allostery to retain PARP-1 on a DNA break. Further, we generated a new PARPi compound, converting an allosteric pro-release compound to a pro-retention compound and increasing its ability to kill cancer cells. These developments are pertinent to clinical applications where PARP-1 trapping is either desirable or undesirable.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Roturas del ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Bencimidazoles/química , Bencimidazoles/farmacología , Línea Celular Tumoral , Humanos , Isoindoles/química , Isoindoles/farmacología , Piperazinas/química , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Dominios Proteicos
11.
J Biol Chem ; 294(40): 14574-14590, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31375564

RESUMEN

Human tankyrase-1 (TNKS) is a member of the poly(ADP-ribose) polymerase (PARP) superfamily of proteins that posttranslationally modify themselves and target proteins with ADP-ribose (termed PARylation). The TNKS ankyrin repeat domain mediates interactions with a growing number of structurally and functionally diverse binding partners, linking TNKS activity to multiple critical cell processes, including Wnt signaling, Golgi trafficking, and telomere maintenance. However, some binding partners can engage TNKS without being modified, suggesting that separate parameters influence TNKS interaction and PARylation. Here, we present an analysis of the sequence and structural features governing TNKS interactions with two model binding partners: the PARylated partner telomeric repeat-binding factor 1 (TRF1) and the non-PARylated partner GDP-mannose 4,6-dehydratase (GMD). Using a combination of TNKS-binding assays, PARP activity assays, and analytical ultracentrifugation sedimentation analysis, we found that both the specific sequence of a given TNKS-binding peptide motif and the quaternary structure of individual binding partners play important roles in TNKS interactions. We demonstrate that GMD forms stable 1:1 complexes with the TNKS ankyrin repeat domain; yet, consistent with results from previous studies, we were unable to detect GMD modification. We also report in vitro evidence that TNKS primarily directs PAR modification to glutamate/aspartate residues. Our results suggest that TNKS-binding partners possess unique sequence and structural features that control binding and PARylation. Ultimately, our findings highlight the binding partner:ankyrin repeat domain interface as a viable target for inhibition of TNKS activity.


Asunto(s)
Hidroliasas/química , Complejos Multiproteicos/química , Estructura Cuaternaria de Proteína/genética , Tanquirasas/química , Proteínas de Unión a Telómeros/química , Adenosina Difosfato Ribosa/química , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Repetición de Anquirina/genética , Ácido Aspártico/genética , Sitios de Unión/genética , Ácido Glutámico/genética , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Complejo Shelterina , Relación Estructura-Actividad , Tanquirasas/genética , Tanquirasas/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Vía de Señalización Wnt/genética
12.
Nat Commun ; 10(1): 2954, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273204

RESUMEN

PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Cromatina/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Recombinación Homóloga/genética , Humanos , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
13.
J Med Chem ; 62(11): 5330-5357, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31042381

RESUMEN

Poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that block the catalytic activity of PARP proteins. Optimization of our lead compound 1 (( Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-7-carboxamide; PARP-1 IC50 = 434 nM) led to a tetrazolyl analogue (51, IC50 = 35 nM) with improved inhibition. Isosteric replacement of the tetrazole ring with a carboxyl group (60, IC50 = 68 nM) gave a promising new lead, which was subsequently optimized to obtain analogues with potent PARP-1 IC50 values (4-197 nM). PARP enzyme profiling revealed that the majority of compounds are selective toward PARP-2 with IC50 values comparable to clinical inhibitors. X-ray crystal structures of the key inhibitors bound to PARP-1 illustrated the mode of interaction with analogue appendages extending toward the PARP-1 adenosine-binding pocket. Compound 81, an isoform-selective PARP-1/-2 (IC50 = 30 nM/2 nM) inhibitor, demonstrated selective cytotoxic effect toward breast cancer gene 1 ( BRCA1)-deficient cells compared to isogenic BRCA1-proficient cells.


Asunto(s)
Adenosina/metabolismo , Benzofuranos/síntesis química , Benzofuranos/farmacología , Diseño de Fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencias de Aminoácidos , Benzofuranos/química , Benzofuranos/metabolismo , Biocatálisis , Línea Celular Tumoral , Técnicas de Química Sintética , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
14.
Curr Opin Struct Biol ; 53: 187-198, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30481609

RESUMEN

Poly(ADP-ribose) is a posttranslational modification and signaling molecule that regulates many aspects of human cell biology, and it is synthesized by enzymes known as poly(ADP-ribose) polymerases, or PARPs. A diverse collection of domain structures dictates the different cellular roles of PARP enzymes and regulates the production of poly(ADP-ribose). Here we primarily review recent structural insights into the regulation and catalysis of two family members: PARP-1 and Tankyrase. PARP-1 has multiple roles in the cellular response to DNA damage and the regulation of gene transcription, and Tankyrase regulates a diverse set of target proteins involved in cellular processes such as mitosis, genome integrity, and cell signaling. Both enzymes offer interesting modes of regulating the production and the target site selectivity of the poly(ADP-ribose) modification.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/química , Tanquirasas/química , Proteínas de Unión al ADN/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Dominios Proteicos/fisiología , Tanquirasas/antagonistas & inhibidores , Tanquirasas/fisiología
15.
J Proteome Res ; 17(7): 2542-2551, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29812941

RESUMEN

Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.


Asunto(s)
ADP-Ribosilación , Ácido Fluorhídrico/química , Poli(ADP-Ribosa) Polimerasa-1/química , Adenosina Difosfato Ribosa/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem
16.
Nat Commun ; 9(1): 844, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487285

RESUMEN

PARP-1 cleaves NAD+ and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we show using the non-hydrolyzable NAD+ analog benzamide adenine dinucleotide (BAD) that PARP-1 autoinhibition results from a selective block on NAD+ binding. Following DNA damage detection, BAD binding to the catalytic domain leads to changes in PARP-1 dynamics at distant DNA-binding surfaces, resulting in increased affinity for DNA damage, and providing direct evidence of reverse allostery. Our findings reveal a two-step mechanism to activate and to then stabilize PARP-1 on a DNA break, indicate that PARP-1 allostery influences persistence on DNA damage, and have important implications for PARP inhibitors that engage the NAD+ binding site.


Asunto(s)
NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Nucleótidos de Adenina , Regulación Alostérica , Benzamidas , Reparación del ADN , Humanos , NAD/análogos & derivados , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Conformación Proteica
17.
Mol Biosyst ; 13(12): 2660-2671, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29058739

RESUMEN

ADP-ribosylation is a protein post-translational modification catalyzed by ADP-ribose transferases (ARTs). ART activity is critical in mediating many cellular processes, and is required for DNA damage repair. All five histone proteins are extensively ADP-ribosylated by ARTs upon induction of DNA damage. However, how these modifications aid in repair processes is largely unknown, primarily due to lack of knowledge about where they site-specifically occur on histones. Here, we conduct a comprehensive analysis of histone Asp/Glu ADP-ribosylation sites upon DNA damage induced by dimethyl sulfate (DMS). We also demonstrate that incubation of cell nuclei with NAD+, as has been done previously in the literature, leads to spurious ADP-ribosylation levels of histone proteins. Altogether, we were able to identify 30 modification sites, 20 of which are novel. We also quantify the abundance of these modification sites during the course of DNA damage insult to identify which sites are critical for mediating repair. We found that every quantifiable site increases in abundance over time and that each identified ADP-ribosylation site is located on the surface of the nucleosome. Together, the data suggest specific Asp/Glu residues are unlikely to be critical for DNA damage repair and rather that this process is likely dependent on ADP-ribosylation of the nucleosomal surface in general.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , ADP-Ribosilación/genética , ADP-Ribosilación/fisiología , Animales , Daño del ADN/genética , Daño del ADN/fisiología , Humanos , Espectrometría de Masas en Tándem
18.
AIMS Genet ; 4(1): 21-31, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804761

RESUMEN

DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose)polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.

19.
Methods Mol Biol ; 1608: 431-444, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695525

RESUMEN

Human PARP-1, PARP-2, and PARP-3 are key players in the cellular response to DNA damage, during which their catalytic activities are acutely stimulated through interaction with DNA strand breaks. There are also roles for these PARPs outside of the DNA damage response, most notably for PARP-1 and PARP-2 in the regulation of gene expression. Here, we describe a general method to express and purify these DNA damage-dependent PARPs from E. coli cells for use in biochemical assays and for structural and functional analysis. The procedure allows for robust production of PARP enzymes that are free of contaminant DNA that can interfere with downstream analysis. The described protocols have been updated from our earlier reported methods, most importantly to introduce PARP inhibitors in the production scheme to cope with enzyme toxicity that can compromise the yield of purified protein.


Asunto(s)
Daño del ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/aislamiento & purificación , Animales , Cromatografía de Afinidad , Daño del ADN/efectos de los fármacos , Escherichia coli/enzimología , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/aislamiento & purificación , Poli(ADP-Ribosa) Polimerasas/metabolismo
20.
Mol Cell ; 64(3): 455-466, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773677

RESUMEN

Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejo Mediador/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/genética , Sitios de Unión , Complejo Mediador/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/metabolismo , Iniciación de la Transcripción Genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...