Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Adv Radiat Oncol ; 9(3): 101392, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292885

RESUMEN

Purpose: Breath-hold (BH) technique can mitigate target motion, minimize target margins, reduce normal tissue doses, and lower the effect of interplay effects with intensity-modulated proton therapy (IMPT). This study presents dosimetric comparisons between BH and nonbreath-hold (non-BH) IMPT plans and investigates the reproducibility of BH plans using frequent quality assurance (QA) computed tomography scans (CT). Methods and Materials: Data from 77 consecutive patients with liver (n = 32), mediastinal/lung (n = 21), nonliver upper abdomen (n = 20), and malignancies in the gastroesophageal junction (n = 4), that were treated with a BH spirometry system (SDX) were evaluated. All patients underwent both BH CT and 4-dimensional CT simulations. Clinically acceptable BH and non-BH plans were generated on each scan, and dose-volume histograms of the 2 plans were compared. Reproducibility of the BH plans for 30 consecutive patients was assessed using 1 to 3 QA CTs per patient and variations in dose-volume histograms for deformed target and organs at risk (OARs) volumes were compared with the initial CT plan. Results: Use of BH scans reduced initial and boost target volumes to 72% ± 20% and 70% ± 17% of non-BH volumes, respectively. Additionally, mean dose to liver, stomach, kidney, esophagus, heart, and lung V20 were each reduced to 71% to 79% with the BH technique. Similarly, small and large bowels, heart, and spinal cord maximum doses were each lowered to 68% to 84%. Analysis of 62 QA CT scans demonstrated that mean target and OAR doses using BH scans were reproducible to within 5% of their nominal plan values. Conclusions: The BH technique reduces the irradiated volume, leading to clinically significant reductions in OAR doses. By mitigating tumor motion, the BH technique leads to reproducible target coverage and OAR doses. Its use can reduce motion-related uncertainties that are normally associated with the treatment of thoracic and abdominal tumors and, therefore, optimize IMPT delivery.

2.
Int J Part Ther ; 9(4): 279-289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169007

RESUMEN

Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has yet to be characterized during clinical commissioning. We aim to characterize the 250-MeV proton beam from the Varian ProBeam system for FLASH and assess the usability of the clinical monitoring ionization chamber (MIC) for FLASH use. We measured the following data for beam commissioning: integral depth dose curve, spot sigma, and absolute dose. To evaluate the MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured (1) the central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that achieves FLASH DR (ie, > 40 Gy/s), and (3) DR reproducibility. All FLASH DR measurements were performed using an ion chamber for the absolute dose, and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from integral depth dose were 37.58 and 37.69 cm, and spot sigma at the isocenter were σx = 3.336 and σy = 3.332 mm, respectively. The absolute dose output was measured as 0.343 Gy*mm2/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA and gradually increased to 12-fold for 115 nA. Dose and DR depended on beam current, spot spacing, and arrangement and could be reproduced with 6.4% and 4.2% variations, respectively. Although FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35 × 35 mm2, the current MIC has DR dependence, and users should measure dose and DR independently each time for their FLASH applications.

3.
J Appl Clin Med Phys ; 24(9): e13997, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37101399

RESUMEN

PURPOSE: Improving efficiency of intensity modulated proton therapy (IMPT) treatment can be achieved by shortening the beam delivery time. The purpose of this study is to reduce the delivery time of IMPT, while maintaining the plan quality, by finding the optimal initial proton spot placement parameters. METHODS: Seven patients previously treated in the thorax and abdomen with gated IMPT and voluntary breath-hold were included. In the clinical plans, the energy layer spacing (ELS) and spot spacing (SS) were set to 0.6-0.8 (as a scale factor of the default values). For each clinical plan, we created four plans with ELS increased to 1.0, 1.2, 1.4, and SS to 1.0 while keeping all other parameters unchanged. All 35 plans (130 fields) were delivered on a clinical proton machine and the beam delivery time was recorded for each field. RESULTS: Increasing ELS and SS did not cause target coverage reduction. Increasing ELS had no effect on critical organ-at-risk (OAR) doses or the integral dose, while increasing SS resulted in slightly higher integral and selected OAR doses. Beam-on times were 48.4 ± 9.2 (range: 34.1-66.7) seconds for the clinical plans. Time reductions were 9.2 ± 3.3 s (18.7 ± 5.8%), 11.6 ± 3.5 s (23.1 ± 5.9%), and 14.7 ± 3.9 s (28.9 ± 6.1%) when ELS was changed to 1.0, 1.2, and 1.4, respectively, corresponding to 0.76-0.80 s/layer. SS change had a minimal effect (1.1 ± 1.6 s, or 1.9 ± 2.9%) on the beam-on time. CONCLUSION: Increasing the energy layers spacing can reduce the beam delivery time effectively without compromising IMPT plan quality; increasing the SS had no meaningful impact on beam delivery time and resulted in plan-quality degradation in some cases.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica
4.
Adv Radiat Oncol ; 7(1): 100825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34805622

RESUMEN

PURPOSE: Proton beam therapy can significantly reduce cardiopulmonary radiation exposure compared with photon-based techniques in the postmastectomy setting for locally advanced breast cancer. For patients with metallic port tissue expanders, which are commonly placed in patients undergoing a staged breast reconstruction, dose uncertainties introduced by the high-density material pose challenges for proton therapy. In this report, we describe an intensity modulated proton therapy planning technique for port avoidance through a hybrid single-field optimization/multifield optimization approach. METHODS AND MATERIALS: In this planning technique, 3 beams are utilized. For each beam, no proton spot is placed within or distal to the metal port plus a 5 mm margin. Therefore, precise modeling of the metal port is not required, and various tissue expander manufacturers/models are eligible. The blocked area of 1 beam is dosimetrically covered by 1 or 2 of the remaining beams. Multifield optimization is used in the chest wall target region with blockage of any beam, while single-field optimization is used for remainder of chest wall superior/inferior to the port. RESULTS: Using this technique, clinical plans were created for 6 patients. Satisfactory plans were achieved in the 5 patients with port-to-posterior chest wall separations of 1.5 cm or greater, but not in the sixth patient with a 0.7 cm separation. CONCLUSIONS: We described a planning technique and the results suggest that the metallic port-to-chest wall distance may be a key parameter for optimal plan design.

5.
Med Phys ; 49(3): 2014-2025, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34800301

RESUMEN

PURPOSE: Compared to CONV-RT (with conventional dose rate), FLASH-RT (with ultra-high dose rate) can provide biological dose sparing for organs-at-risk (OARs) via the so-called FLASH effect, in addition to physical dose sparing. However, the FLASH effect only occurs, when both dose and dose rate meet certain minimum thresholds. This work will develop a simultaneous dose and dose rate optimization (SDDRO) method accounting for both FLASH dose and dose rate constraints during treatment planning for pencil-beam-scanning proton therapy. METHODS: SDDRO optimizes the FLASH effect (specific to FLASH-RT) as well as the dose distribution (similar to CONV-RT). The nonlinear dose rate constraint is linearized, and the reformulated optimization problem is efficiently solved via iterative convex relaxation powered by alternating direction method of multipliers. To resolve and quantify the generic tradeoff of FLASH-RT between FLASH and dose optimization, we propose the use of FLASH effective dose based on dose modifying factor (DMF) owing to the FLASH effect. RESULTS: FLASH-RT via transmission beams (TB) (IMPT-TB or SDDRO) and CONV-RT via Bragg peaks (BP) (IMPT-BP) were evaluated for clinical prostate, lung, head-and-neck (HN), and brain cases. Despite the use of TB, which is generally suboptimal to BP for normal tissue sparing, FLASH-RT via SDDRO considerably reduced FLASH effective dose for high-dose OAR adjacent to the target. For example, in the lung SBRT case, the max esophageal dose constraint 27 Gy was only met by SDDRO (24.8 Gy), compared to IMPT-BP (35.3 Gy) or IMPT-TB (36.6 Gy); in the brain SRS case, the brain constraint V12Gy≤15cc was also only met by SDDRO (13.7cc), compared to IMPT-BP (43.9cc) or IMPT-TB (18.4cc). In addition, SDDRO substantially improved the FLASH coverage from IMPT-TB, e.g., an increase from 37.2% to 67.1% for lung, from 39.1% to 58.3% for prostate, from 65.4% to 82.1% for HN, from 50.8% to 73.3% for the brain. CONCLUSIONS: Both FLASH dose and dose rate constraints are incorporated into SDDRO for FLASH-RT that jointly optimizes the FLASH effect and physical dose distribution. FLASH effective dose via FLASH DMF is introduced to reconcile the tradeoff between physical dose sparing and FLASH sparing, and quantify the net effective gain from CONV-RT to FLASH-RT.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
6.
J Appl Clin Med Phys ; 22(5): 89-96, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33783960

RESUMEN

PURPOSE: The purpose of this study was to evaluate the performance of three common deformable image registration (DIR) packages across algorithms and institutions. METHODS AND MATERIALS: The Deformable Image Registration Evaluation Project (DIREP) provides ten virtual phantoms derived from computed tomography (CT) datasets of head-and-neck cancer patients over a single treatment course. Using the DIREP phantoms, DIR results from 35 institutions were submitted using either Velocity, MIM, or Eclipse. Submitted deformation vector fields (DVFs) were compared to ground-truth DVFs to calculate target registration error (TRE) for six regions of interest (ROIs). Statistical analysis was performed to determine the variability between each DIR software package and the variability of users within each algorithm. RESULTS: Overall mean TRE was 2.04 ± 0.35 mm for Velocity, 1.10 ± 0.29 mm for MIM, and 2.35 ± 0.15 mm for Eclipse. The MIM mean TRE was significantly different than both Velocity and Eclipse for all ROIs. Velocity and Eclipse mean TREs were not significantly different except for when evaluating the registration of the cord or mandible. Significant differences between institutions were found for the MIM and Velocity platforms. However, these differences could be explained by variations in Velocity DIR parameters and MIM software versions. CONCLUSIONS: Average TRE was shown to be <3 mm for all three software platforms. However, maximum errors could be larger than 2 cm indicating that care should be exercised when using DIR. While MIM performed statistically better than the other packages, all evaluated algorithms had an average TRE better than the largest voxel dimension. For the phantoms studied here, significant differences between algorithm users were minimal suggesting that the algorithm used may have more impact on DIR accuracy than the particular registration technique employed. A significant difference in TRE was discovered between MIM versions showing that DIR QA should be performed after software upgrades as recommended by TG-132.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Cabeza , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
7.
Phys Med ; 82: 54-63, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33588228

RESUMEN

The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada Cuatridimensional , Humanos , Japón , Polonia , Planificación de la Radioterapia Asistida por Computador
8.
Adv Radiat Oncol ; 5(5): 1022-1031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083665

RESUMEN

PURPOSE: To propose a method of optimizing intensity modulated proton therapy (IMPT) plans robust against dosimetric degradation caused by random anatomic variations during treatment. METHODS AND MATERIALS: Fifteen patients with prostate cancer treated with IMPT to the pelvic targets were nonrandomly selected. On the repeated quality assurance computed tomography (QACTs) for some patients, bowel density changes were observed and caused dose degradation because the treated plans were not robustly optimized (non-RO). To mitigate this effect, we developed a robust planning method based on 3 CT images, including the native planning CT and its 2 copies, with the bowel structures being assigned to air and tissue, respectively. The RO settings included 5 mm setup uncertainty and 3.5% range uncertainty on 3 CTs. This method is called pseudomultiple-CT RO (pMCT-RO). Plans were also generated using RO on the native CT only, with the same setup and range uncertainties. This method is referred to as single-CT RO (SCT-RO). Doses on the QACTs and the nominal planning CT were compared for the 3 planning methods. RESULTS: All 3 plan methods provided sufficient clinical target volumes D95% and V95% on the QACTs. For pMCT-RO plans, the normal tissue Dmax on QACTs of all patients was at maximum 109.1%, compared with 144.4% and 116.9% for non-RO and SCT-RO plans, respectively. On the nominal plans, the rectum and bladder doses were similar among all 3 plans; however, the volume of normal tissue (excluding the rectum and bladder) receiving the prescription dose or higher is substantially reduced in either pMCT-RO plans or SCT-RO plans, compared with the non-RO plans. CONCLUSIONS: We developed a robust optimization method to further mitigate undesired dose heterogeneity caused by random anatomic changes in pelvic IMPT treatment. This method does not require additional patient CT scans. The pMCT-RO planning method has been implemented clinically since 2017 in our center.

9.
Med Phys ; 47(12): 6388-6395, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068294

RESUMEN

PURPOSE: FLASH radiotherapy (RT) can potentially reduce normal tissue toxicity while preserving tumoricidal effectiveness to improve the therapeutic ratio. The key of FLASH for sparing normal tissues is to irradiate tissues with an ultra-high dose rate (i.e., ≥40 Gy/s), for which proton RT can be used. However, currently available treatment plan optimization method only optimizes the dose distribution and does not directly optimize the dose rate. The contribution of this work to FLASH proton RT is the development of a novel treatment optimization method, that is, simultaneous dose and dose rate optimization (SDDRO), to optimize tissue-receiving dose rate distribution as well as dose distribution. METHODS: Distinguished from existing methods, SDDRO accounts for dose rate constraint and optimizes dose rate distribution. In terms of mathematical formulation, SDDRO is a constrained optimization problem with dose-volume constraint on dose distribution, minimum dose rate constraint on dose-averaged tissue-receiving dose rates, minimum monitor unit constraint on spot weight, and maximum intensity constraint on beam intensity. In terms of optimization algorithm, SDDRO is solved by iterative convex relaxation and alternating direction method of multipliers. SDDRO algorithms are presented for both scenarios with either constant or variable beam intensity. RESULTS: SDDRO was compared with intensity modulated proton therapy (IMPT) (dose optimization alone, and no dose rate optimization) using three lung cases. SDDRO substantially improved the dose rate distribution compared to IMPT, for example, increasing of the region-of-interest (ROI) volume (ROI = CTV_10mm: the ring sandwiched by 10 mm outer and inner expansion of CTV boundary) receiving at least 40 Gy/s from ~30-50% to at least 98%, and the lung volume receiving at least 40 Gy/s from ~30-40% to ~70-90%. Moreover, both dose and dose rate distributions from SDDRO were further considerably improved via the combined use of hypofractionation and multiple beams. CONCLUSIONS: We have developed a joint dose and dose rate optimization method for FLASH proton RT, namely SDDRO, which is first-of-its-kind to the best of our knowledge. The results suggest that (a) SDDRO can substantially improve the FLASH-dose rate coverage (e.g., in terms of dose rate volume histogram) compared to IMPT for the purpose of normal tissue sparing while preserving the dose distribution and (b) the combination of hypofractionation and multiple beams can further considerably improve the SDDRO plan quality in terms of both dose and dose rate distribution.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Algoritmos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
10.
Med Phys ; 47(9): 3892-3897, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32614472

RESUMEN

PURPOSE: This work aims to reduce dose delivery time of pencil beam scanning (PBS) proton plans, which is the dominant factor of total plan delivery time. A proton PBS system, such as Varian ProBeam proton therapy system, can be equipped with the proton dose rate that is linearly proportional to the minimum monitor unit (MU) (i.e., number of protons) of PBS spots before saturation. Thus dose delivery time can be potentially reduced by increasing the MU threshold. However, commercially available treatment planning systems and current methods only allow for a single MU threshold globally for all PBS spots (i.e., all energy layers), and consequently the room to increase this minimum-MU for reducing dose delivery time is very limited since higher minimum-MU can greatly degrade treatment plan quality. METHODS: Two major innovations of this work are the proposal of using variable MU thresholds locally adaptive to each energy layer, that is, minimum-MU-per-energy-layer (MMPEL), for reducing dose delivery time, and the joint optimization of plan delivery time and plan quality. Minimum-MU-per-energy-layer is formulated as a constrained optimization problem with objectives of dose-volume-histogram based planning constraints and plan delivery time, and minimum-MU constraints per energy layer for deliverable PBS spots. Minimum-MU-per-energy-layer is solved by iterative convex relaxations via alternating direction method of multipliers. RESULTS: Representative prostate, lung, brain, head-and-neck, breast, liver and pancreas cases were used to validate MMPEL. Minimum-MU-per-energy-layer reduced dose delivery time to 53%, 67%, 67%, 53%, 54%, 32%, and 14% respectively while maintaining a similar plan quality. Accepting a slightly degraded plan quality that still met all physician planning constraints, the treatment time could be further reduced to 26%, 35%, 41%, 34%, 32%, 16%, and 11% respectively, or in another word MMPEL accelerated the PBS plan delivery by 2-10 fold. CONCLUSIONS: A new proton PBS treatment planning method MMPEL with variable energy-adaptive MU thresholds is developed to optimize dose delivery time jointly with plan quality. The preliminary results suggest that MMPEL could substantially reduce dose delivery time.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Masculino , Fenómenos Físicos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
11.
Phys Med Biol ; 65(16): 165014, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32428888

RESUMEN

The goal of this work was to create a technique that could measure all possible spatial and temporal delivery rates used in pencil-beam scanning (PBS) proton therapy. The proposed system used a fast scintillation screen for full-field imaging to resolve temporal and spatial patterns as it was delivered. A fast intensified CMOS camera used continuous mode with 10 ms temporal frame rate and 1 × 1 mm2 spatial resolution, imaging a scintillation screen during clinical proton PBS delivery. PBS plans with varying dose, dose rate, energy, field size, and spot-spacing were generated, delivered and imaged. The captured images were post processed to provide dose and dose rate values after background subtraction, perspective transformation, uniformity correction for the camera and the scintillation screen, and calibration into dose. The linearity in scintillation response with respect to varying dose rate, dose, and field size was within 2%. The quenching corrected response with varying energy was also within 2%. Large spatio-temporal variations in dose rate were observed, even for plans delivered with similar dose distributions. Dose and dose rate histograms and maximum dose rate maps were generated for quantitative evaluations. With the fastest PBS delivery on a clinical system, dose rates up to 26.0 Gy s-1 were resolved. The scintillation imaging technique was able to quantify proton PBS dose rate profiles with spot weight as low as 2 MU, with spot-spacing of 2.5 mm, having a 1 × 1 mm2 spatial resolution. These dose rate temporal profiles, spatial maps, and cumulative dose rate histograms provide useful metrics for the potential evaluation and optimization of dose rate in treatment plans.


Asunto(s)
Imagen Molecular/métodos , Terapia de Protones , Dosis de Radiación , Calibración , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen
12.
Med Phys ; 47(4): 1545-1557, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31945191

RESUMEN

PURPOSE: Treatment planning systems (TPSs) from different vendors can involve different implementations of Monte Carlo dose calculation (MCDC) algorithms for pencil beam scanning (PBS) proton therapy. There are currently no guidelines for validating non-water materials in TPSs. Furthermore, PBS-specific parameters can vary by 1-2 orders of magnitude among different treatment delivery systems (TDSs). This paper proposes a standardized framework on the use of commissioning data and steps to validate TDS-specific parameters and TPS-specific heterogeneity modeling to potentially reduce these uncertainties. METHODS: A standardized commissioning framework was developed to commission the MCDC algorithms of RayStation 8A and Eclipse AcurosPT v13.7.20 using water and non-water materials. Measurements included Bragg peak depth-dose and lateral spot profiles and scanning field outputs for Varian ProBeam. The phase-space parameters were obtained from in-air measurements and the number of protons per MU from output measurements of 10 × 10 cm2 square fields at a 2 cm depth. Spot profiles and various PBS field measurements at additional depths were used to validate TPS. Human tissues in TPS, Gammex phantom materials, and artificial materials were used for the TPS benchmark and validation. RESULTS: The maximum differences of phase parameters, spot sigma, and divergence between MCDC algorithms are below 4.5 µm and 0.26 mrad in air, respectively. Comparing TPS to measurements at depths, both MC algorithms predict the spot sigma within 0.5 mm uncertainty intervals, the resolution of the measurement device. Beam Configuration in AcurosPT is found to underestimate number of protons per MU by ~2.5% and requires user adjustment to match measured data, while RayStation is within 1% of measurements using Auto model. A solid water phantom was used to validate the range accuracy of non-water materials within 1% in AcurosPT. CONCLUSIONS: The proposed standardized commissioning framework can detect potential issues during PBS TPS MCDC commissioning processes, and potentially can shorten commissioning time and improve dosimetric accuracies. Secondary MCDC can be used to identify the root sources of disagreement between primary MCDC and measurement.


Asunto(s)
Algoritmos , Método de Montecarlo , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/normas , Estándares de Referencia
13.
Br J Radiol ; 93(1107): 20190845, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31904261

RESUMEN

OBJECTIVES: The purpose of this study is to investigate the dosimetric effect and clinical impact of delivering a focal radiotherapy boost dose to multiparametric MRI (mp-MRI)-defined dominant intraprostatic lesions (DILs) in prostate cancer using proton therapy. METHODS: We retrospectively investigated 36 patients with pre-treatment mp-MRI and CT images who were treated using pencil beam scanning (PBS) proton radiation therapy to the whole prostate. DILs were contoured on co-registered mp-MRIs. Simultaneous integrated boost (SIB) plans using intensity-modulated proton therapy (IMPT) were created based on conventional whole-prostate-irradiation for each patient and optimized with additional DIL coverage goals and urethral constraints. DIL dose coverage and organ-at-risk (OAR) sparing were compared between conventional and SIB plans. Tumor control probability (TCP) and normal tissue complication probability (NTCP) were estimated to evaluate the clinical impact of the SIB plans. RESULTS: Optimized SIB plans significantly escalated the dose to DILs while meeting OAR constraints. SIB plans were able to achieve 125, 150 and 175% of prescription dose coverage in 74, 54 and 17% of 36 patients, respectively. This was modeled to result in an increase in DIL TCP by 7.3-13.3% depending on α/ß and DIL risk level. CONCLUSION: The proposed mp-MRI-guided DIL boost using proton radiation therapy is feasible without violating OAR constraints and demonstrates a potential clinical benefit by improving DIL TCP. This retrospective study suggested the use of IMPT-based DIL SIB may represent a strategy to improve tumor control. ADVANCES IN KNOWLEDGE: This study investigated the planning of mp-MRI-guided DIL boost in prostate proton radiation therapy and estimated its clinical impact with respect to TCP and NTCP.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Reirradiación/métodos , Anciano , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Humanos , Masculino , Persona de Mediana Edad , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Próstata/diagnóstico por imagen , Próstata/efectos de la radiación , Neoplasias de la Próstata/patología , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Uretra/diagnóstico por imagen
14.
Med Dosim ; 45(3): e10-e15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31870600

RESUMEN

Introduction The aim of this article is to introduce a novel protocol for proton pencil beam scanning treatment with moderate deep inspiration breath hold (mDIBH) and report on our clinical implementation results. Methods Three computed tomography (CT) scannings to build the patient's anatomy model were performed during the patient's voluntary mDIBH. All 3 CT scans were used in the optimization during the treatment planning process. Both orthogonal kV imaging and cone-beam computed tomography (CBCT) were implemented for patient alignment with BH prior to the treatment. The BH CBCT images were analyzed for BH reproducibility and the virtual total dose (VTD) retrospectively. To find the VTD, a series of deformable image registrations (DIR) were performed between CBCT and pCT. The effect of the variation of lung density on the dose distribution was also analyzed in the study. Results The values of the mean, standard deviation, maximum, and minimum of the tumor location difference between the CBCT and pCT were 1.9, 1.6, 4.7, and 0.0 mm, respectively. The percentage difference in D99% of CTVs between VTD and the nominal plan was within 1.5%. Conclusions The feedback-based voluntary moderate BH proton PBS treatment was successfully performed in our clinic. This study shows that there is a potential to implement the BH treatment widely in proton centers.


Asunto(s)
Contencion de la Respiración , Enfermedad de Hodgkin/radioterapia , Terapia de Protones , Tomografía Computarizada de Haz Cónico , Enfermedad de Hodgkin/diagnóstico por imagen , Humanos , Masculino , Radiometría , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
Phys Med Biol ; 64(20): 205001, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31530746

RESUMEN

The deliverability of proton pencil beam scanning (PBS) plans is subject to the minimum monitor-unit (MU) constraint, while the delivery efficiency depends on the number of proton energy layers. This work develops an inverse optimization method for generating efficiently deliverable PBS plans. The proposed minimum-MU and sparse-energy-layer (MMSEL) constrained inverse optimization method utilizes iterative convex relaxations to handle the nonconvexity from minimum-MU constraint and dose-volume constraints, and regularizes group sparsity of proton spots to minimize the number of energy layers. The tradeoff between plan quality and delivery efficiency (in terms of the number of used energy layers) is controlled by the objective weighting of group sparsity regularization. MMSEL consists of two steps: first minimize for appropriate energy layers, and then with selected energy layers solve for the deliverable PBS plan. The solution algorithm for MMSEL is developed using alternating direction method of multipliers (ADMM). Range and setup uncertainties are modelled by robust optimization. MMSEL was validated using representative prostate, lung, and head-and-neck (HN) cases. The minimum-MU constraint was strictly enforced for all cases, so that all plans were deliverable. The number of energy layers was reduced by MMSEL to 78%, 76%, and 61% for prostate, lung and HN, respectively, while the similar plan quality was achieved. The number of energy layers was reduced by MMSEL to 54%, 57%, and 37% for prostate, lung and HN, respectively, while the plan quality was comprised and acceptable. MMSEL is proposed to strictly enforce minimum-MU constraint and minimize the number of energy layers during inverse optimization for efficiently deliverable PBS plans. In particular, the preliminary results suggest MMSEL potentially enables 25% to 40% reduction of energy layers while maintaining the similar plan quality.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias Pulmonares/radioterapia , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Humanos , Masculino , Órganos en Riesgo/efectos de la radiación , Cintigrafía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Incertidumbre
16.
Med Phys ; 46(10): 4685-4689, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31347182

RESUMEN

PURPOSE: The aim of this work is to describe a method of machine quality assurance (QA) by measuring proton spread-out Bragg peak constructed by the integrated depth dose via a large-diameter (12-cm) multilayer ionization chamber (LD-MLIC). METHODS: Two types of contours are used to create the nominal plan. The final nominal plan is composed of mixed-energy proton pencil-beam spots located close to the central axis. The integrated depth dose (IDD) curve contains a flat SOBP region. The LD-MLIC-measured IDD was compared to the IDD curve exported from the treatment planning system (TPS). In addition, three plans with intentionally modified energy layers to simulate wrong-delivered energy layers were created and measured by the LD-MLIC. The water equivalent thickness (WET) difference between the inserted and replaced energies was 0.2 cm. Six weeks of measurements were analyzed. A low-pass filter was introduced to mitigate the high-frequency noise in the IDD signal ratios. The filtered IDD signal ratios between the modified plans in different weeks and the baseline were used to check the energy accuracy. RESULTS: The differences between the LD-MLIC-measured and TPS-exported IDDs of the nominal plan were within 2% in most parts of the curve. Bumps/dips (~1%) were noted in the filtered IDD ratio between the modified plans and the baseline. CONCLUSIONS: The LD-MLIC can be used to check the accuracy of multiple energies Bragg peak locations quickly in proton machine QA. The LD-MLIC was sensitive in identifying an erroneous energy with 0.2 cm in WET.


Asunto(s)
Protones , Radiometría/instrumentación , Estudios de Factibilidad , Control de Calidad
17.
J Gastrointest Oncol ; 9(4): 687-693, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151265

RESUMEN

BACKGROUND: With an increasing number of proton centers capable of delivering pencil beam scanning (PBS), understanding the dosimetric differences in PBS compared to passively scattered proton therapy (PSPT) for pancreatic cancer is of interest. METHODS: Optimized PBS plans were retrospectively generated for 11 patients with locally advanced pancreatic cancer previously treated with PSPT to 59.4 Gy on a prospective trial. The primary tumor was targeted without elective nodal coverage. The same treatment couch, target coverage and normal tissue dose objectives were used for all plans. A Wilcoxon t-test was performed to compare various dosimetric points between the two plans for each patient. RESULTS: All target volume coverage goals were met in all PBS and passive scattering (PS) plans, except for the planning target volume (PTV) coverage goal (V100% >95%) which was not met in one PS plan (range, 81.8-98.9%). PBS was associated with a lower median relative dose (102.4% vs. 103.8%) to 10% of the PTV (P=0.001). PBS plans had a lower median duodenal V59.4 Gy (37.4% vs. 40.4%; P=0.014), lower small bowel median V59.4 Gy (0.11% vs. 0.37%; P=0.012), lower stomach median V59.4 Gy (0.01% vs. 0.1%; P=0.023), and lower median dose to 0.1 cc of the spinal cord {35.0 vs. 38.7 Gy [relative biological effectiveness (RBE)]; P=0.001}. Liver dose was higher in PBS plans for median V5 Gy (24.1% vs. 20.2%; P=0.032), V20 Gy (3.2% vs. 2.8%; P=0.010), and V25 Gy (2.6% vs. 2.2%; P=0.019). There was no difference in kidney dose between PBS and PS plans. CONCLUSIONS: Proton therapy for locally advanced pancreatic cancer using PBS was not clearly associated with clinically meaningful reductions in normal tissue dose compared to PS. Some statistically significant improvements in PTV coverage were achieved using PBS. PBS may offer improved conformality for the treatment of irregular targets, and further evaluation of PBS and PS incorporating elective nodal irradiation should be considered.

18.
Semin Radiat Oncol ; 28(3): 248-255, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29933884

RESUMEN

Concepts of planning target volume and plan robustness in proton therapy are described. Implementation of these concepts into treatment planning is described. Proton plan sensitivity and interfractional and intrafractional anatomical variation are also discussed.


Asunto(s)
Neoplasias/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Variación Anatómica , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Errores de Configuración en Radioterapia , Carga Tumoral
20.
Int J Radiat Oncol Biol Phys ; 100(1): 226-234, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29254775

RESUMEN

PURPOSE: To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS). METHODS AND MATERIALS: A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D2 - D98)/Dmean, of a single-fraction delivery is reported, where D2 and D98 is the dose delivered to 2% and 98% of the target, respectively, and Dmean is the mean dose. RESULTS: The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no repainting, 13.7% with 8 repaintings, 12.0% with the new repainting scheme, and 11.6% for the 4D dose without interplay effects. CONCLUSIONS: A novel repainting strategy for efficient interplay effect mitigation was proposed, implemented, and shown to outperform conventional repainting in experiments, simulations, and dose reconstructions. This strategy could allow for safe and more optimal clinical delivery of thoracic and abdominal proton PBS and better facilitate hypofractionated and stereotactic treatments.


Asunto(s)
Neoplasias/radioterapia , Movimientos de los Órganos , Terapia de Protones/métodos , Respiración , Neoplasias de los Bronquios/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Células Renales/radioterapia , Espiración , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Inhalación , Neoplasias Renales/radioterapia , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...