Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(2): e14274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265979

RESUMEN

PURPOSE: To characterize detector array spacing and gamma index for quality assurance (QA) of stereotactic radiosurgery (SRS) deliveries. Use the Nyquist theorem to determine the required detector spacing in SRS fields, and find optimal gamma indices to detect MLC errors using the SRS MapCHECK, ArcCHECK, and a portal imaging device (EPID). METHODS: The required detector spacing was determined via Fourier analysis of small radiation fields and profiles of typical SRS treatment plans. The clinical impact of MLC errors of 0.5, 1, and 2 mm was evaluated. Global gamma (low-dose threshold 10%) was evaluated for the three detector systems using various combinations of the distance to agreement and the dose difference. RESULTS: While MLC errors only slightly affected mean dose to PTV and a 2 mm thick surrounding structure (PTV_2 mm), significant PTV underdose incurred with increase in maximum dose to PTV_2 mm. Gamma indices with highest sensitivity to the introduced errors at 95% tolerance level for plans on target volumes of 3.2 cm3 (plan 3 cc) and 35.02 cm3 (plan 35 cc) were 2%/1 mm for the SRS MapCHECK and 2%/3 mm for the ArcCHECK, with 3%/1 mm (plan 3cc) and 2%/1 mm (plan 35cc) for the EPID. Drops in passing rates for a 2 mm MLC error were (46.2%, 41.6%) for the SRS MapCHECK and (12.2%, 4.2%) for the ArcCHECK for plan 3cc and plan 35cc, respectively. For Portal Dose, values were 4.5% (plan 3cc) and 7% (plan 35cc). The Nyquist frequency of two SRS dose distributions lie between 0.26  and 0.1 mm-1 , corresponding to detector spacings of 1.9 and 5 mm. Evaluation of SRS MapCHECK data with doubled detector density indicates that increased detector density may reduce the system's sensitivity to errors, necessitating a tighter gamma index. CONCLUSIONS: The present results give insight on the performance of detector arrays and gamma indices for the investigated detectors during SRS QA.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Rayos gamma , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica
2.
Radiother Oncol ; 183: 109600, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889597

RESUMEN

BACKGROUND AND PURPOSE: Radiation therapy for glioblastoma (GBM) typically involves large target volumes. The aim of this study was to examine the recurrence pattern of GBM following modern radiochemotherapy according to EORTC guidelines and provide dose and distance information for the choice of optimal target volume margins. MATERIALS AND METHODS: In this study, the recurrences of 97 GBM patients, treated with radiochemotherapy from 2013 to 2017 at the Medical Center- University of Freiburg, Germany were analysed. Dose and distance based metrices were used to derive recurrence patterns. RESULTS: The majority of recurrences (75%) occurred locally within the primary tumor area. Smaller GTVs had a higher rate of distant recurrences. Larger treated volumes did not show a clinical benefit regarding progression free and overall survival. CONCLUSION: The identified recurrence pattern suggests that adjustments or reductions in target volume margins are feasible and could result in similar survival rates, potentially combined with a lower risk of side effects.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/radioterapia , Recurrencia Local de Neoplasia/patología , Planificación de la Radioterapia Asistida por Computador , Quimioradioterapia , Riesgo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología
3.
Phys Med Biol ; 63(2): 025023, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29336348

RESUMEN

We introduce a new method called NoVo (Noncoplanar VMAT Optimization) to produce volumetric modulated arc therapy (VMAT) treatment plans with noncoplanar trajectories. While the use of noncoplanar beam arrangements for intensity modulated radiation therapy (IMRT), and in particular high fraction stereotactic radiosurgery (SRS), is common, noncoplanar beam trajectories for VMAT are less common as the availability of treatment machines handling these is limited. For both IMRT and VMAT, the beam angle selection problem is highly nonconvex in nature, which is why automated beam angle selection procedures have not entered mainstream clinical usage. NoVo determines a noncoplanar VMAT solution (i.e. the simultaneous trajectories of the gantry and the couch) by first computing a [Formula: see text] solution (beams from every possible direction, suitably discretized) and then eliminating beams by examing fluence contributions. Also all beam angles are scored via geometrical considerations only to find out the usefulness of the whole beam space in a very short time. A custom path finding algorithm is applied to find an optimized, continuous trajectory through the most promising beam angles using the calculated score of the beam space. Finally, using this trajectory a VMAT plan is optimized. For three clinical cases, a lung, brain, and liver case, we compare NoVo to the ideal [Formula: see text] solution, nine beam noncoplanar IMRT, coplanar VMAT, and a recently published noncoplanar VMAT algorithm. NoVo comes closest to the [Formula: see text] solution considering the lung case (brain and liver case: second), as well as improving the solution time by using geometrical considerations, followed by a time effective iterative process reducing the [Formula: see text] solution. Compared to a recently published noncoplanar VMAT algorithm, using NoVo the computation time is reduced by a factor of 2-3 (depending on the case). Compared to coplanar VMAT, NoVo reduces the objective function value by 24%, 49% and 6% for the lung, brain and liver cases, respectively.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/radioterapia , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
4.
Phys Med Biol ; 60(8): 3375-87, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25831017

RESUMEN

According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.


Asunto(s)
Radioisótopos de Cobalto/uso terapéutico , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia/instrumentación , Humanos , Aceleradores de Partículas/instrumentación , Radioterapia/métodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...