Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 198(4): 633-43, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26644433

RESUMEN

UNLABELLED: Rhodobacter capsulatus is capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, and lacZ reporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed. IMPORTANCE: Biological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, including Rhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome in R. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno , Nitrogenasa/metabolismo , Rhodobacter capsulatus/enzimología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Nitrógeno/metabolismo , Nitrogenasa/genética , Proteoma/genética , Proteoma/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
2.
Nat Commun ; 5: 5804, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25517874

RESUMEN

Escherichia coli RidA is a member of a structurally conserved, yet functionally highly diverse protein family involved in translation inhibition (human), Hsp90-like chaperone activity (fruit fly) and enamine/imine deamination (Salmonella enterica). Here, we show that E. coli RidA modified with HOCl acts as a highly effective chaperone. Although activation of RidA is reversed by treatment with DTT, ascorbic acid, the thioredoxin system and glutathione, it is independent of cysteine modification. Instead, treatment with HOCl or chloramines decreases the amino group content of RidA by reversibly N-chlorinating positively charged residues. N-chlorination increases hydrophobicity of RidA and promotes binding to a wide spectrum of unfolded cytosolic proteins. Deletion of ridA results in an HOCl-sensitive phenotype. HOCl-mediated N-chlorination thus is a cysteine-independent post-translational modification that reversibly turns RidA into an effective chaperone holdase, which plays a crucial role in the protection of cytosolic proteins during oxidative stress.


Asunto(s)
Proteínas Bacterianas/agonistas , Proteínas de Escherichia coli/agonistas , Escherichia coli/química , Ácido Hipocloroso/química , Chaperonas Moleculares/agonistas , Procesamiento Proteico-Postraduccional , Animales , Ácido Ascórbico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Glutatión/química , Halogenación , Humanos , Hidrocarburos Clorados/química , Interacciones Hidrofóbicas e Hidrofílicas , Ácido Hipocloroso/farmacología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Electricidad Estática , Tiorredoxinas/química
3.
Photosynth Res ; 122(3): 293-304, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25134685

RESUMEN

The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αß)(α'ß) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the ß-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position ß-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position ß-Cys-50 and ß-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the ß-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.


Asunto(s)
Criptófitas/metabolismo , Ficobiliproteínas/química , Biliverdina/análogos & derivados , Biliverdina/química , Cromatografía Líquida de Alta Presión , Criptófitas/fisiología , Complejos de Proteína Captadores de Luz/química , Espectrometría de Masas , Peso Molecular , Ficobilinas/química , Ficobiliproteínas/metabolismo , Ficobiliproteínas/fisiología , Ficocianina/química , Subunidades de Proteína/química , Análisis de Secuencia de Proteína
4.
ACS Comb Sci ; 15(11): 585-92, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24147906

RESUMEN

High systemic toxicity of antimicrobial peptides (AMPs) limits their clinical application to the treatment of topical infections; in parenteral systemic application of AMPs the problem of hemolysis is one of the first to be tackled. We now show that the selectivity of lipidated short synthetic AMPs can be optimized substantially by reducing their hemolytic activity without affecting their activity against methicillin resistant Staphylococcus aureus (MRSA). In order to identify the optimized peptides, two sets of 32 diastereomeric H-(D)Arg-WRWRW-(L)Lys(C(O)CnH2n+1)-NH2 (n = 7 or 9) peptides were prepared using a split-split procedure to perform a systematic L-to-D exchange scan on the central WRWRW-fragment. Compared to the all-L C8-lipidated lead sequence, diastereomeric peptides had very similar antibacterial properties, but were over 30 times less hemolytic. We show that the observed hemolysis and antibacterial activity is affected by both differences in lipophilicity of the different peptides and specific combinations of L- and D-amino acid residues. This study identified several peptides that can be used as tools to precisely unravel the origin of hemolysis and thus help to design even further optimized nontoxic very active short antibacterial peptides.


Asunto(s)
Aminoácidos/química , Antibacterianos/farmacología , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Péptidos/farmacología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Estereoisomerismo , Relación Estructura-Actividad
5.
Mol Microbiol ; 89(4): 715-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23802546

RESUMEN

DnaK-DnaJ-GrpE and GroES-GroEL are the major chaperone machineries in bacteria. In many species, dnaKJ and groESL are encoded in bicistronic operons. Quantitative proteomics revealed that DnaK and GroEL amounts in Salmonella dominate over DnaJ and GroES respectively. An imperfect transcriptional terminator in the intergenic region of dnaKJ is known to result in higher transcript levels of the first gene. Here, we examined the groESL operon and asked how the second gene in a heat shock operon can be preferentially expressed and found that an RNA structure in the 5'untranslated region of groES is responsible. The secondary structure masks the Shine-Dalgarno (SD) sequence and AUG start codon and thereby modulates translation of groES mRNA. Reporter gene assays combined with structure probing and toeprinting analysis revealed a dynamic temperature-sensitive RNA structure. Following an increase in temperature, only the second of two RNA hairpins melts and partially liberates the SD sequence, thus facilitating translation. Translation of groEL is not temperature-regulated leading to an excess of the chaperonin in the cell at low temperature. Discussion in a broader context shows how structured RNA segments can differentially control expression of temperature-affected operons in various ways.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Chaperoninas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Operón , ARN Mensajero/metabolismo , Salmonella typhimurium/efectos de la radiación , Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Secuencia de Bases , Chaperoninas/genética , Genes Reporteros , Calor , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de la radiación , ARN Mensajero/química , ARN Mensajero/genética , Salmonella typhimurium/genética
6.
ACS Chem Biol ; 8(7): 1442-50, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23578171

RESUMEN

Two hetero-tri-organometallic compounds with potent activity against Gram-positive bacteria including multi-resistant Staphylococcus aureus (MRSA) were identified. The compounds consist of a peptide nucleic acid backbone with an alkyne side chain, substituted with a cymantrene, a (dipicolyl)Re(CO)3 moiety, and either a ferrocene (FcPNA) or a ruthenocene (RcPNA). Comparative proteomic analysis indicates the bacterial membrane as antibiotic target structure. FcPNA accumulation in the membrane was confirmed by manganese tracing with atomic absorption spectroscopy. Both organometallics disturbed several essential cellular processes taking place at the membrane such as respiration and cell wall biosynthesis, suggesting that the compounds affect membrane architecture. Correlating with enhanced antibacterial activity, oxidative stress was induced only by the ferrocene-substituted compound. The organometallics described here target the cytoplasmic membrane, a clinically proven antibacterial target structure, feature a bactericidal but non-bacteriolytic mode of action and limited cytotoxicity within the limits of solubility. Thus, FcPNA represents a promising lead structure for the development of a new synthetic class of antibiotics.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/farmacología , Proteómica , Espectrofotometría Atómica
7.
J Bacteriol ; 195(9): 1912-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23417489

RESUMEN

The outer membrane is the first line of defense for Gram-negative bacteria and serves as a major barrier for antibiotics and other harmful substances. The biosynthesis of lipopolysaccharides (LPS), the essential component of the outer membrane, must be tightly controlled as both too much and too little LPS are toxic. In Escherichia coli, the cellular level of the key enzyme LpxC, which catalyzes the first committed step in LPS biosynthesis, is adjusted by proteolysis carried out by the essential and membrane-bound protease FtsH. Here, we demonstrate that LpxC is degraded in a growth rate-dependent manner with half-lives between 4 min and >2 h. According to the cellular demand for LPS biosynthesis, LpxC is degraded during slow growth but stabilized when cells grow rapidly. Disturbing the balance between LPS and phospholipid biosynthesis in favor of phospholipid production in an E. coli strain encoding a hyperactive FabZ protein abolishes growth rate dependency of LpxC proteolysis. Lack of the alternative sigma factor RpoS or inorganic polyphosphates, which are known to mediate growth rate-dependent gene regulation in E. coli, did not affect proteolysis of LpxC. In contrast, absence of RelA and SpoT, which synthesize the alarmone (p)ppGpp, deregulated LpxC degradation resulting in rapid proteolysis in fast-growing cells and stabilization during slow growth. Our data provide new insights into the essential control of LPS biosynthesis in E. coli.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Nucleótidos de Guanina/metabolismo , Lipopolisacáridos/biosíntesis , Proteasas ATP-Dependientes/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Cinética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo
8.
J Org Chem ; 77(22): 9954-8, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23116417

RESUMEN

A novel linker for the synthesis of C-terminal acetylene-functionalized protected peptides is described. This SAM1 linker is applied in the manual Fmoc-based solid-phase peptide synthesis of Leu-enkephalin and in microwave-assisted automated synthesis of Maculatin 2.1, an antibacterial peptide that contains 18 amino acid residues. For the cleavage, treatment with tetramethylammonium fluoride results in protected acetylene-derivatized peptides. Alternatively, a one-pot cleavage-click procedure affords the protected 1,2,3-triazole conjugate in high yields after purification.


Asunto(s)
Acetileno/química , Acetileno/síntesis química , Alquinos/química , Encefalina Leucina/química , Encefalina Leucina/síntesis química , Péptidos/química , Péptidos/síntesis química , Silanos/química , Microondas , Estructura Molecular , Técnicas de Síntesis en Fase Sólida
9.
J Biol Chem ; 287(51): 42962-71, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23091052

RESUMEN

Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteómica/métodos , Proteasas ATP-Dependientes/aislamiento & purificación , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/aislamiento & purificación , Viabilidad Microbiana , Modelos Biológicos , Presión Osmótica , Oxígeno/metabolismo , Fenotipo , Estabilidad Proteica , Proteolisis , Proteoma/metabolismo , Reproducibilidad de los Resultados , Especificidad por Sustrato
10.
ACS Med Chem Lett ; 3(12): 980-4, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900420

RESUMEN

The attachment of lipids to C- or N-terminally positioned lysine side-chain amino groups increases the activity of a short synthetic (Arg-Trp)3 antimicrobial peptide significantly, making these peptides even active against pathogenic Gram-negative bacteria. Thus, a peptide with strong activity against S. aureus (1.1-2 µM) and good activity against A. baumannii and P. aeruginosa (9-18 µM) was identified. The most promising peptide causes 50% hemolysis at 285 µM and shows some selectivity against human cancer cell lines. Interestingly, the increased activity of ferrocenoylated peptides is mostly due to the lipophilicity of the organometallic fragment.

11.
Biochim Biophys Acta ; 1823(1): 40-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21925212

RESUMEN

Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Proteasas ATP-Dependientes/metabolismo , Secuencia de Aminoácidos , Fenómenos Fisiológicos Bacterianos , Secuencia Conservada , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Estrés Fisiológico
12.
Mol Microbiol ; 80(5): 1313-25, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21435040

RESUMEN

Post-translational proteolysis-dependent regulation of critical cellular processes is a common feature in bacteria. The Escherichia coli Lon protease is involved in the control of the SOS response, acid tolerance and nutritional deprivation. Moreover, Lon plays a role in the regulation of toxin-antitoxin (TA) systems and thereby is linked to persister cell induction. Persister cells represent a small subpopulation that has reversibly switched to a dormant and non-dividing state without genomic alterations. Formation of persister cells permits viability upon nutritional depletion and severe environmental stresses. CspD is a replication inhibitor, which is induced in stationary phase or upon carbon starvation and increases the production of persister cells. It has remained unknown how CspD activity is counteracted when growth is resumed. Here we report that CspD is subject to proteolysis by the Lon protease both in vivo and in vitro. Turnover of CspD by Lon is strictly adjusted to the growth rate and growth phase of E. coli, reflecting the necessity to control CspD levels according to the physiological conditions.


Asunto(s)
Replicación del ADN , Regulación hacia Abajo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteasa La/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteasa La/genética , Estabilidad Proteica
13.
J Bacteriol ; 193(5): 1090-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21193611

RESUMEN

Despite the essential function of lipopolysaccharides (LPS) in Gram-negative bacteria, it is largely unknown how the exact amount of this molecule in the outer membrane is controlled. The first committed step in LPS biosynthesis is catalyzed by the LpxC enzyme. In Escherichia coli, the cellular concentration of LpxC is adjusted by the only essential protease in this organism, the membrane-anchored metalloprotease FtsH. Turnover of E. coli LpxC requires a length- and sequence-specific C-terminal degradation signal. LpxC proteins from Salmonella, Yersinia, and Vibrio species carry similar C-terminal ends and, like the E. coli enzyme, were degraded by FtsH. Although LpxC proteins are highly conserved in Gram-negative bacteria, there are striking differences in their C termini. The Aquifex aeolicus enzyme, which is devoid of the C-terminal extension, was stable in E. coli, whereas LpxC from the alphaproteobacteria Agrobacterium tumefaciens and Rhodobacter capsulatus was degraded by the Lon protease. Proteolysis of the A. tumefaciens protein required the C-terminal end of LpxC. High stability of Pseudomonas aeruginosa LpxC in E. coli and P. aeruginosa suggested that Pseudomonas uses a proteolysis-independent strategy to control its LPS content. The differences in LpxC turnover along with previously reported differences in susceptibility against antimicrobial compounds have important implications for the potential of LpxC as a drug target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipopolisacáridos/biosíntesis , Pseudomonas aeruginosa/metabolismo , Salmonella typhimurium/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/genética , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Salmonella typhimurium/genética
14.
Res Microbiol ; 160(9): 652-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19744556

RESUMEN

Control of cellular processes by regulated proteolysis is conserved among all organisms. FtsH, the only membrane-anchored AAA protease in bacteria, fulfills a variety of regulatory functions. This review focuses on soluble FtsH substrates in Escherichia coli and in other bacteria and outlines emerging substrate recognition principles.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Membrana Celular/enzimología , Citoplasma/enzimología , Proteínas de Escherichia coli/metabolismo , Proteasas ATP-Dependientes/química , Amidohidrolasas/metabolismo , Biocatálisis , Proteínas de Escherichia coli/química , Proteínas de la Membrana/metabolismo , Especificidad por Sustrato
15.
FEMS Microbiol Lett ; 290(2): 199-208, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19025566

RESUMEN

Transcription of most heat shock genes in Escherichia coli is initiated by the alternative sigma factor sigma(32) (RpoH). At physiological temperatures, RpoH is rapidly degraded by chaperone-mediated FtsH-dependent proteolysis. Several RpoH residues critical for degradation are located in the highly conserved region 2.1. However, additional residues were predicted to be involved in this process. We introduced mutations in region C of RpoH and found that a double mutation (A131E, K134V) significantly stabilized RpoH against degradation by the FtsH protease. Single-point mutations at these positions only showed a slight effect on RpoH stability. Both double and single amino acid substitutions did not impair sigma factor activity as demonstrated by a groE-lacZ reporter gene fusion, Western blot analysis of heat shock gene expression and increased heat tolerance in the presence of these proteins. Combined mutations in regions 2.1 and C further stabilized RpoH. We also demonstrate that an RpoH fragment composed of residues 37-147 (including regions 2.1 and C) is degraded in an FtsH-dependent manner. We conclude that in addition to the previously described turnover element in region 2.1, a previously postulated second region important for proteolysis of RpoH by FtsH lies in region C of the sigma factor.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Factor sigma/química , Factor sigma/metabolismo , Proteasas ATP-Dependientes/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/aislamiento & purificación , Hidrólisis , Datos de Secuencia Molecular , Mutación Missense , Estabilidad Proteica , Alineación de Secuencia , Factor sigma/genética , Factor sigma/aislamiento & purificación
16.
J Mol Biol ; 372(2): 485-96, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17651755

RESUMEN

The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional/genética , Amidohidrolasas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Estabilidad de Enzimas , Escherichia coli/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Solubilidad , Relación Estructura-Actividad
17.
Mol Microbiol ; 59(3): 1025-36, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420369

RESUMEN

Lipopolysaccharide (LPS) biosynthesis is essential in Gram negative bacteria. LpxC, the key enzyme in LPS formation, catalyses the limiting reaction and controls the ratio between LPS and phospholipids. As overproduction of LPS is toxic, the cellular amount of LpxC must be regulated carefully. The membrane-bound protease FtsH controls the level of LpxC via proteolysis making FtsH the only essential protease of Escherichia coli. We found that the chaperones DnaK and DnaJ co-purified with LpxC. However, degradation of LpxC was DnaK/J-independent in contrast to turnover of the heat shock sigma factor sigma32 (RpoH). The stability of LpxC in a bacterial one-hybrid system suggested that a terminus of LpxC might be important for degradation. Different LpxC truncations and extensions were constructed. Removal of at least five amino acids from the C-terminus abolished degradation by FtsH in vivo. While addition of two aspartic acids to LpxC did not alter its half-life, the exchange of the last two residues against aspartic acids resulted in stabilization. All stable LpxC enzymes were active in vivo as assayed by their high toxicity. Our data demonstrate that the C-terminus of LpxC contains a signal sequence necessary for FtsH-dependent degradation.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Proteasas ATP-Dependientes , Amidohidrolasas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Datos de Secuencia Molecular , Mutación , Eliminación de Secuencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA