Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 199, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378469

RESUMEN

BACKGROUND: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS: We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS: This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.


Asunto(s)
Helianthus , Helianthus/genética , Helianthus/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Estrés Fisiológico/genética , Plantas/genética , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298305

RESUMEN

Cultivated sunflower (Helianthus annuus L.) exhibits numerous phenotypic and transcriptomic responses to drought. However, the ways in which these responses vary with differences in drought timing and severity are insufficiently understood. We used phenotypic and transcriptomic data to evaluate the response of sunflower to drought scenarios of different timing and severity in a common garden experiment. Using a semi-automated outdoor high-throughput phenotyping platform, we grew six oilseed sunflower lines under control and drought conditions. Our results reveal that similar transcriptomic responses can have disparate phenotypic effects when triggered at different developmental time points. Leaf transcriptomic responses, however, share similarities despite timing and severity differences (e.g., 523 differentially expressed genes (DEGs) were shared across all treatments), though increased severity elicited greater differences in expression, particularly during vegetative growth. Across treatments, DEGs were highly enriched for genes related to photosynthesis and plastid maintenance. A co-expression analysis identified a single module (M8) enriched in all drought stress treatments. Genes related to drought, temperature, proline biosynthesis, and other stress responses were overrepresented in this module. In contrast to transcriptomic responses, phenotypic responses were largely divergent between early and late drought. Early-stressed sunflowers responded to drought with reduced overall growth, but became highly water-acquisitive during recovery irrigation, resulting in overcompensation (higher aboveground biomass and leaf area) and a greater overall shift in phenotypic correlations, whereas late-stressed sunflowers were smaller and more water use-efficient. Taken together, these results suggest that drought stress at an earlier growth stage elicits a change in development that enables greater uptake and transpiration of water during recovery, resulting in higher growth rates despite similar initial transcriptomic responses.


Asunto(s)
Helianthus , Helianthus/metabolismo , Transcriptoma , Sequías , Fenotipo , Agua/metabolismo
3.
J Adv Res ; 42: 83-98, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513422

RESUMEN

INTRODUCTION: Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES: This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS: Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS: Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION: Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.


Asunto(s)
Helianthus , Vigor Híbrido , Vigor Híbrido/genética , Helianthus/genética , Estudio de Asociación del Genoma Completo , Codón de Terminación , Fenotipo
4.
Bioinformatics ; 38(17): 4127-4134, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35792837

RESUMEN

MOTIVATION: Inferring gene regulatory networks in non-independent genetically related panels is a methodological challenge. This hampers evolutionary and biological studies using heterozygote individuals such as in wild sunflower populations or cultivated hybrids. RESULTS: First, we simulated 100 datasets of gene expressions and polymorphisms, displaying the same gene expression distributions, heterozygosities and heritabilities as in our dataset including 173 genes and 353 genotypes measured in sunflower hybrids. Secondly, we performed a meta-analysis based on six inference methods [least absolute shrinkage and selection operator (Lasso), Random Forests, Bayesian Networks, Markov Random Fields, Ordinary Least Square and fast inference of networks from directed regulation (Findr)] and selected the minimal density networks for better accuracy with 64 edges connecting 79 genes and 0.35 area under precision and recall (AUPR) score on average. We identified that triangles and mutual edges are prone to errors in the inferred networks. Applied on classical datasets without heterozygotes, our strategy produced a 0.65 AUPR score for one dataset of the DREAM5 Systems Genetics Challenge. Finally, we applied our method to an experimental dataset from sunflower hybrids. We successfully inferred a network composed of 105 genes connected by 106 putative regulations with a major connected component. AVAILABILITY AND IMPLEMENTATION: Our inference methodology dedicated to genomic and transcriptomic data is available at https://forgemia.inra.fr/sunrise/inference_methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Humanos , Heterocigoto , Teorema de Bayes , Genómica , Algoritmos
5.
Theor Appl Genet ; 135(11): 4049-4063, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35294575

RESUMEN

KEY MESSAGE: Crop simulation helps to analyze environmental impacts on crops and provides year-independent context information. This information is of major importance when deciding which cultivar to choose at sowing time. Plant breeding programs design new crop cultivars which, while developed for distinct populations of environments, are nevertheless grown over large areas during their time in the market. Over its cultivation area, the crop is exposed to highly diverse stress patterns caused by climatic uncertainty and multiple management options, which often leads to decreased expected crop performance. In this study, we aim to assess how finer spatial management of genetic resources could reduce the yield variance explained by genotype × environment interactions in a set of cropping environments and ultimately improve the efficiency and stability of crop production. We used modeling and simulation to predict the crop performance resulting from the interaction between cultivar growth and development, climate and soil conditions, and management practices. We designed a computational experiment that evaluated the performance of a collection of commercial sunflower cultivars in a realistic population of cropping conditions in France, built from extensive agricultural surveys. Distinct farming locations sharing similar simulated abiotic stress patterns were clustered together to specify environment types. We then used optimization methods to search for cultivars × environments combinations leading to increased yield expectations. Results showed that a single cultivar choice adapted to the most frequent environment-type in the population is a robust strategy. However, the relevance of cultivar recommendations to specific locations was gradually increasing with the knowledge of pedo-climatic conditions. We argue that this approach while being operational on current genetic material could act synergistically with plant breeding as more diverse material could enable access to cultivars with distinctive traits, more adapted to specific conditions.


Asunto(s)
Helianthus , Helianthus/genética , Francia
7.
BMC Genomics ; 22(1): 893, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906091

RESUMEN

BACKGROUND: Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. RESULTS: To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. CONCLUSIONS: This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower.


Asunto(s)
Helianthus , Proteínas de Plantas , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Helianthus/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescencia de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
BMC Plant Biol ; 19(1): 446, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651254

RESUMEN

BACKGROUND: Leaf senescence is a complex process, controlled by multiple genetic and environmental variables. In sunflower, leaf senescence is triggered abruptly following anthesis thereby limiting the capacity of plants to keep their green leaf area during grain filling, which subsequently has a strong impact on crop yield. Recently, we performed a selection of contrasting sunflower inbred lines for the progress of leaf senescence through a physiological, cytological and molecular approach. Here we present a large scale transcriptomic analysis using RNA-seq and its integration with metabolic profiles for two contrasting sunflower inbred lines, R453 and B481-6 (early and delayed senescence respectively), with the aim of identifying metabolic pathways associated to leaf senescence. RESULTS: Gene expression profiles revealed a higher number of differentially expressed genes, as well as, higher expression levels in R453, providing evidence for early activation of the senescence program in this line. Metabolic pathways associated with sugars and nutrient recycling were differentially regulated between the lines. Additionally, we identified transcription factors acting as hubs in the co-expression networks; some previously reported as senescence-associated genes in model species but many are novel candidate genes. CONCLUSIONS: Understanding the onset and the progress of the senescence process in crops and the identification of these new candidate genes will likely prove highly useful for different management strategies to mitigate the impact of senescence on crop yield. Functional characterization of candidate genes will help to develop molecular tools for biotechnological applications in breeding crop yield.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Helianthus/genética , Biología de Sistemas , Transcriptoma , Genómica , Helianthus/fisiología , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Especificidad de la Especie , Factores de Tiempo
9.
Metabolomics ; 15(4): 56, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30929085

RESUMEN

INTRODUCTION: Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers of response or performance. METHODS AND OBJECTIVES: The experimental material consisted in eight sunflower lines with two line status, four restorers (R, used as males) and four maintainers (B, corresponding to females) routinely used for sunflower hybrid varietal production, respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to characterize sunflower leaf composition in order to investigate the effect of line status genotypes and environmental conditions and to find the best and smallest set of biomarkers for line status and stress response using a custom-made process of variables selection. RESULTS: Five hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such as 1H-NMR, MS-based profiles and targeted analyses of major metabolites. Based on statistical analyses, a limited number of markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological data. Another metabolic marker set was able to discriminate line status. CONCLUSION: This study underlines the potential of metabolic markers for discriminating genotype groups and environmental conditions. Their potential use for prediction is discussed.


Asunto(s)
Helianthus/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , Biomarcadores/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Genotipo , Helianthus/genética , Metabolómica/métodos , Estrés Fisiológico/fisiología
10.
Nat Plants ; 5(1): 54-62, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598532

RESUMEN

Domesticated plants and animals often display dramatic responses to selection, but the origins of the genetic diversity underlying these responses remain poorly understood. Despite domestication and improvement bottlenecks, the cultivated sunflower remains highly variable genetically, possibly due to hybridization with wild relatives. To characterize genetic diversity in the sunflower and to quantify contributions from wild relatives, we sequenced 287 cultivated lines, 17 Native American landraces and 189 wild accessions representing 11 compatible wild species. Cultivar sequences failing to map to the sunflower reference were assembled de novo for each genotype to determine the gene repertoire, or 'pan-genome', of the cultivated sunflower. Assembled genes were then compared to the wild species to estimate origins. Results indicate that the cultivated sunflower pan-genome comprises 61,205 genes, of which 27% vary across genotypes. Approximately 10% of the cultivated sunflower pan-genome is derived through introgression from wild sunflower species, and 1.5% of genes originated solely through introgression. Gene ontology functional analyses further indicate that genes associated with biotic resistance are over-represented among introgressed regions, an observation consistent with breeding records. Analyses of allelic variation associated with downy mildew resistance provide an example in which such introgressions have contributed to resistance to a globally challenging disease.


Asunto(s)
Helianthus/genética , Helianthus/microbiología , Hibridación Genética , Enfermedades de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Resistencia a la Enfermedad/genética , Ontología de Genes , Genes de Plantas , Variación Genética , Genoma de Planta , Enfermedades de las Plantas/microbiología , Recombinación Genética , Selección Genética
11.
Data Brief ; 21: 1296-1301, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456247

RESUMEN

This article presents experimental data describing the physiology and morphology of sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen at INRA Toulouse (France). Here, we provide data including specific leaf area, osmotic potential and adjustment, carbon isotope discrimination, leaf transpiration, plant architecture: plant height, leaf number, stem diameter. We also provide leaf areas of individual organs through time and growth rate during the stress period, environmental data such as temperatures, wind and radiation during the experiment. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the physiological basis of heterosis. It is available on the following repository: https://doi.org/10.25794/phenotype/er6lPW7V.

12.
BMC Plant Biol ; 17(1): 167, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29052528

RESUMEN

BACKGROUND: Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation. RESULTS: An efficient and reliable method for inoculation used in field experiments induced stem base necrosis on up to 98% of all plants. A significant genetic variability for PR resistance in the field was detected among the 20 inbred lines of the core collection tested across the two years. For QTL mapping, the PR resistance evaluation was performed on two recombinant inbred lines (RIL) populations derived from the crosses XRQxPSC8 and FUxPAZ2 in two different years. QTL analyses were based on a newly developed consensus genetic map comprising 1007 non-redundant molecular markers. In each of the two RIL populations, different QTL involved in PR partial sunflower resistance were detected. The most significant QTL were detected 49 days post infection (DPI) on LG10 (LOD 7.7) and on LG7 (LOD 12.1) in the XRQxPSC8 and FUxPAZ2 RIL population, respectively. In addition, different QTL were detected on both populations for PR resistance measured between 14 and 35 DPI. In parallel, the incidence of natural attack of P. macdonaldii resulting in BS disease was recorded, showing that in these populations, the genetic of resistance to both diseases is not governed by the same factors. CONCLUSION: This work provides the first insights on the genetic architecture of sunflower PR resistance in the field. Moreover, the separate studies of symptoms on different organs and in time series allowed the identification of a succession of genetic components involved in the sunflower resistance to PR and BS diseases caused by Phoma macdonaldii along the development of the {plant * pathogen} interaction.


Asunto(s)
Ascomicetos/patogenicidad , Helianthus/microbiología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Helianthus/genética , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo/genética
13.
Front Plant Sci ; 8: 1633, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983306

RESUMEN

Prediction of hybrid performance using incomplete factorial mating designs is widely used in breeding programs including different heterotic groups. Based on the general combining ability (GCA) of the parents, predictions are accurate only if the genetic variance resulting from the specific combining ability is small and both parents have phenotyped descendants. Genomic selection (GS) can predict performance using a model trained on both phenotyped and genotyped hybrids that do not necessarily include all hybrid parents. Therefore, GS could overcome the issue of unknown parent GCA. Here, we compared the accuracy of classical GCA-based and genomic predictions for oil content of sunflower seeds using several GS models. Our study involved 452 sunflower hybrids from an incomplete factorial design of 36 female and 36 male lines. Re-sequencing of parental lines allowed to identify 468,194 non-redundant SNPs and to infer the hybrid genotypes. Oil content was observed in a multi-environment trial (MET) over 3 years, leading to nine different environments. We compared GCA-based model to different GS models including female and male genomic kinships with the addition of the female-by-male interaction genomic kinship, the use of functional knowledge as SNPs in genes of oil metabolic pathways, and with epistasis modeling. When both parents have descendants in the training set, the predictive ability was high even for GCA-based prediction, with an average MET value of 0.782. GS performed slightly better (+0.2%). Neither the inclusion of the female-by-male interaction, nor functional knowledge of oil metabolism, nor epistasis modeling improved the GS accuracy. GS greatly improved predictive ability when one or both parents were untested in the training set, increasing GCA-based predictive ability by 10.4% from 0.575 to 0.635 in the MET. In this scenario, performing GS only considering SNPs in oil metabolic pathways did not improve whole genome GS prediction but increased GCA-based prediction ability by 6.4%. Our results show that GS is a major improvement to breeding efficiency compared to the classical GCA modeling when either one or both parents are not well-characterized. This finding could therefore accelerate breeding through reducing phenotyping efforts and more effectively targeting for the most promising crosses.

14.
Plant Cell Environ ; 40(10): 2276-2291, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28418069

RESUMEN

Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65 534 tested Single Nucleotide Polymorphisms (SNPs), we identified nine quantitative trait loci controlling oil yield plasticity to cold stress. Associated single nucleotide polymorphisms are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, lipid transfer protein, cystatin, alternative oxidase or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.


Asunto(s)
Productos Agrícolas/genética , Estudio de Asociación del Genoma Completo , Aceites de Plantas/metabolismo , Estrés Fisiológico/genética , Mapeo Cromosómico , Frío , Ambiente , Genes de Plantas , Calor , Modelos Teóricos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
15.
Theor Appl Genet ; 130(6): 1099-1112, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28255669

RESUMEN

KEY MESSAGE: SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools. Mean allele number varied from 1.07 to 1.90. Intra-population variability was slightly reduced according to the number of multiplications since entry but some entries were probably largely homozygous when received. A principal component analysis was used to study inter-population variability. The first 3 axes accounted for 17% of total intra-population variability. The first axis was significantly correlated with seed oil content, more closely than just the distinction between oil and confectionary types. The second axis was related to the presence or absence of restorer genes and the third axis to flowering date and possibly to adaptation to different climates. Our results provide arguments highlighting the effect of the maintenance process on the within population genetic variability as well as on the impact of breeding for major agronomic traits on the between population variability of the collection. Propositions are made to improve sunflower population maintenance procedures to keep maximum genetic variability for future breeding.


Asunto(s)
Genética de Población , Helianthus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Alelos , ADN de Plantas/genética , Ligamiento Genético , Genotipo
16.
PLoS One ; 9(7): e101218, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24992022

RESUMEN

High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.


Asunto(s)
Sequías , Helianthus/genética , Agua/metabolismo , Biomasa , Isótopos de Carbono/análisis , Mapeo Cromosómico , Cromosomas de las Plantas/química , Ligamiento Genético , Variación Genética , Genotipo , Helianthus/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
17.
New Phytol ; 203(2): 685-696, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24786523

RESUMEN

Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its evolution. We examined the responses of 32,423 expressed sequences to drought and to abscisic acid (ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the genetic differentiation among populations (FST ) at nodes. We identified two main hubs in the network that transport nitrate in guard cells. This suggests that nitrate transport is a critical aspect of the sunflower physiological response to drought. We observed that differentiation of the network genes in elite sunflower cultivars is correlated with their position and connectivity. This systems biology approach combined molecular data at different time-scales and identified important physiological processes. At the evolutionary level, we propose that network topology could influence responses to human selection and possibly adaptation to dry environments.


Asunto(s)
Redes Reguladoras de Genes , Helianthus/genética , Modelos Genéticos , Ácido Abscísico/genética , Algoritmos , Evolución Biológica , Sequías , Regulación de la Expresión Génica de las Plantas , Helianthus/fisiología , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
18.
PLoS One ; 9(1): e86442, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466101

RESUMEN

Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D), after-ripened non-dormant (ND) and after-ripened dormant seeds (control, C). Quantitative real-time polymerase chain reaction (qPCR) was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05). Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Helianthus/crecimiento & desarrollo , Helianthus/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Perfilación de la Expresión Génica , Germinación , Humedad , Latencia en las Plantas
19.
Plant Cell Environ ; 36(12): 2175-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23639099

RESUMEN

Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.


Asunto(s)
Biomarcadores/metabolismo , Ambiente , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Helianthus/fisiología , Agua/fisiología , Ritmo Circadiano/genética , Deshidratación , Sequías , Perfilación de la Expresión Génica , Genes de Plantas/genética , Estudios de Asociación Genética , Genotipo , Cinética , Modelos Lineales , Transpiración de Plantas/fisiología , Reproducibilidad de los Resultados , Suelo
20.
PLoS One ; 7(10): e45249, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056196

RESUMEN

Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Redes Reguladoras de Genes , Helianthus/genética , Adaptación Fisiológica/efectos de los fármacos , Análisis de Varianza , Ecosistema , Ambiente Controlado , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Variación Genética , Genotipo , Helianthus/efectos de los fármacos , Helianthus/fisiología , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Transcriptoma , Agua/metabolismo , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...