Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 368: 114479, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454712

RESUMEN

Spinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days, and weeks following injury, leading to exacerbation of tissue damage and functional deficits. Among the biochemical changes is the rapid reduction of cellular nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for energy metabolism and an essential cofactor for non-redox NAD+-dependent enzymes with critical functions in sensing and repairing damaged tissue. NAD+ depletion propagates tissue damage. Augmenting NAD+ by exogenous application of NAD+, its synthesizing enzymes, or its cellular precursors mitigates tissue damage. Nicotinamide riboside (NR) is considered to be one of the most promising NAD+ precursors for clinical application due to its ability to safely and effectively boost cellular NAD+ synthesis in rats and humans. Moreover, various preclinical studies have demonstrated that NR can provide tissue protection. Despite these promising findings, little is known about the potential benefits of NR in the context of SCI. In the current study, we tested whether NR administration could effectively increase NAD+ levels in the injured spinal cord and whether this augmentation of NAD+ would promote spinal cord tissue protection and ultimately lead to improvements in locomotor function. Our findings indicate that administering NR (500 mg/kg) intraperitoneally from four days before to two weeks after a mid-thoracic contusion-SCI injury, effectively doubles NAD+ levels in the spinal cord of Long-Evans rats. Moreover, NR administration plays a protective role in preserving spinal cord tissue post-injury, particularly in neurons and axons, as evident from the observed gray and white matter sparing. Additionally, it enhances motor function, as evaluated through the BBB subscore and missteps on the horizontal ladderwalk. Collectively, these findings demonstrate that administering NR, a precursor of NAD+, increases NAD+ within the injured spinal cord and effectively mitigates the tissue damage and functional decline that occurs following SCI.


Asunto(s)
NAD , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , NAD/metabolismo , Ratas Long-Evans , Niacinamida/farmacología , Niacinamida/uso terapéutico , Niacinamida/metabolismo , Compuestos de Piridinio , Traumatismos de la Médula Espinal/tratamiento farmacológico
2.
J Med Chem ; 64(8): 4810-4840, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33830764

RESUMEN

Histone deacetylase 6 (HDAC6) is a promising therapeutic target for the treatment of neurodegenerative disorders. SW-100 (1a), a phenylhydroxamate-based HDAC6 inhibitor (HDAC6i) bearing a tetrahydroquinoline (THQ) capping group, is a highly potent and selective HDAC6i that was shown to be effective in mouse models of Fragile X syndrome and Charcot-Marie-Tooth disease type 2A (CMT2A). In this study, we report the discovery of a new THQ-capped HDAC6i, termed SW-101 (1s), that possesses excellent HDAC6 potency and selectivity, together with markedly improved metabolic stability and druglike properties compared to SW-100 (1a). X-ray crystallography data reveal the molecular basis of HDAC6 inhibition by SW-101 (1s). Importantly, we demonstrate that SW-101 (1s) treatment elevates the impaired level of acetylated α-tubulin in the distal sciatic nerve, counteracts progressive motor dysfunction, and ameliorates neuropathic symptoms in a CMT2A mouse model bearing mutant MFN2. Taken together, these results bode well for the further development of SW-101 (1s) as a disease-modifying HDAC6i.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Quinolinas/química , Acetilación , Animales , Benzamidas/química , Benzamidas/metabolismo , Sitios de Unión , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Semivida , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Fenotipo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Quinolinas/metabolismo , Quinolinas/uso terapéutico , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo
3.
Exp Neurol ; 328: 113281, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32147437

RESUMEN

Charcot-Marie-Tooth type 2A (CMT2A) peripheral neuropathy, the most common axonal form of CMT, is caused by dominantly inherited point mutations in the Mitofusin 2 (Mfn2) gene. It is characterized by progressive length-dependent degeneration of motor and sensory nerves with corresponding clinical features of motor and sensory impairment. There is no cure for CMT, and therapeutic approaches are limited to physical therapy, orthopedic devices, surgery, and analgesics. In this study we focus on histone deacetylase 6 (HDAC6) as a therapeutic target in a mouse model of mutant MFN2 (MFN2R94Q)-induced CMT2A. We report that these mice display progressive motor and sensory dysfunction as well as a significant decrease in α-tubulin acetylation in distal segments of long peripheral nerves. Treatment with a new, highly selective HDAC6 inhibitor, SW-100, was able to restore α-tubulin acetylation and ameliorate motor and sensory dysfunction when given either prior to or after the onset of symptoms. To confirm HDAC6 is the target for ameliorating the CMT2A phenotype, we show that genetic deletion of Hdac6 in CMT2A mice prevents the development of motor and sensory dysfunction. Our findings suggest α-tubulin acetylation defects in distal parts of nerves as a pathogenic mechanism and HDAC6 as a therapeutic target for CMT2A.


Asunto(s)
Benzamidas/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Quinolinas/farmacología , Tubulina (Proteína)/metabolismo , Acetilación/efectos de los fármacos , Animales , Enfermedad de Charcot-Marie-Tooth/metabolismo , Ratones , Ratones Mutantes , Actividad Motora/efectos de los fármacos
4.
J Cell Biol ; 218(6): 1871-1890, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31068376

RESUMEN

Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca2+ increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca2+ These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.


Asunto(s)
Histona Desacetilasa 6/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Acetilación/efectos de los fármacos , Animales , Transporte Axonal/efectos de los fármacos , Transporte Axonal/genética , Calcio/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasa 6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Glicoproteína Asociada a Mielina/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
5.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497702

RESUMEN

Damage to the CNS results in neuronal and axonal degeneration, and subsequent neurological dysfunction. Endogenous repair in the CNS is impeded by inhibitory chemical and physical barriers, such as chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon regeneration. Previously, it has been demonstrated that the inhibition of axonal histone deacetylase-6 (HDAC6) can promote microtubule α-tubulin acetylation and restore the growth of CSPGs- and MAG-inhibited axons. Since the acetylation of α-tubulin is regulated by two opposing enzymes, HDAC6 (deacetylation) and α-tubulin acetyltransferase-1 (αTAT1; acetylation), we have investigated the regulation of these enzymes downstream of a growth inhibitory signal. Our findings show that exposure of primary mouse cortical neurons to soluble CSPGs and MAG substrates cause an acute and RhoA-kinase-dependent reduction in α-tubulin acetylation and αTAT1 protein levels, without changes to either HDAC6 levels or HDAC6 activity. The CSPGs- and MAG-induced reduction in αTAT1 occurs primarily in the distal and middle regions of neurites and reconstitution of αTAT1, either by Rho-associated kinase (ROCK) inhibition or lentiviral-mediated αTAT1 overexpression, can restore neurite growth. Lastly, we demonstrate that CSPGs and MAG signaling decreases αTAT1 levels posttranscriptionally via a ROCK-dependent increase in αTAT1 protein turnover. Together, these findings define αTAT1 as a novel potential therapeutic target for ameliorating CNS injury characterized by growth inhibitory substrates that are prohibitive to axonal regeneration.


Asunto(s)
Acetiltransferasas/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Regeneración Nerviosa , Neuritas/enzimología , Proyección Neuronal , Tubulina (Proteína)/metabolismo , Animales , Regulación hacia Abajo , Femenino , Histona Desacetilasa 6/metabolismo , Ratones , Proteínas de Microtúbulos/metabolismo , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
7.
Neurosci Lett ; 625: 26-33, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27155457

RESUMEN

Traumatic brain injury (TBI) contributes to nearly a third of all injury-related deaths in the United States. For survivors of TBI, depending on severity, patients can be left with devastating neurological disabilities that include impaired cognition or memory, movement, sensation, or emotional function. Despite the efforts to identify novel therapeutics, the only strategy to combat TBI is risk reduction (helmets, seatbelts, removal of fall hazards, etc.). Enormous heterogeneity exists within TBI, and it depends on the severity, the location, and whether the injury was focal or diffuse. Evidence from recent studies support the involvement of epigenetic mechanisms such as DNA methylation, chromatin post-translational modification, and miRNA regulation of gene expression in the post-injured brain. In this review, we discuss studies that have assessed epigenetic changes and mechanisms following TBI, how epigenetic changes might not only be limited to the nucleus but also impact the mitochondria, and the implications of these changes with regard to TBI recovery.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia , Epigénesis Genética , Animales , Metilación de ADN , ADN Mitocondrial/genética , Código de Histonas , Humanos , MicroARNs/genética , Recuperación de la Función , Resultado del Tratamiento
8.
ACS Med Chem Lett ; 6(11): 1156-61, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26617971

RESUMEN

Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 µM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro.

9.
Proc Natl Acad Sci U S A ; 112(49): 15220-5, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598704

RESUMEN

Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules--such as myelin-derived Nogo and myelin-associated glycoprotein--or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration.


Asunto(s)
Axones , Inhibidores Enzimáticos/farmacología , Regeneración Nerviosa , Poli(ADP-Ribosa) Polimerasas/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos
10.
F1000Res ; 4: 53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901280

RESUMEN

This brief review of current research progress on Charcot-Marie-Tooth (CMT) disease is a summary of discussions initiated at the Hereditary Neuropathy Foundation (HNF) scientific advisory board meeting on November 7, 2014. It covers recent published and unpublished in vitro and in vivo research. We discuss recent promising preclinical work for CMT1A, the development of new biomarkers, the characterization of different animal models, and the analysis of the frequency of gene mutations in patients with CMT. We also describe how progress in related fields may benefit CMT therapeutic development, including the potential of gene therapy and stem cell research. We also discuss the potential to assess and improve the quality of life of CMT patients. This summary of CMT research identifies some of the gaps which may have an impact on upcoming clinical trials. We provide some priorities for CMT research and areas which HNF can support. The goal of this review is to inform the scientific community about ongoing research and to avoid unnecessary overlap, while also highlighting areas ripe for further investigation. The general collaborative approach we have taken may be useful for other rare neurological diseases.

11.
Antioxid Redox Signal ; 22(2): 121-34, 2015 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24766300

RESUMEN

AIMS: Pharmacological activation of the adaptive response to hypoxia is a therapeutic strategy of growing interest for neurological conditions, including stroke, Huntington's disease, and Parkinson's disease. We screened a drug library with known safety in humans using a hippocampal neuroblast line expressing a reporter of hypoxia-inducible factor (HIF)-dependent transcription. RESULTS: Our screen identified more than 40 compounds with the ability to induce hypoxia response element-driven luciferase activity as well or better than deferoxamine, a canonical activator of hypoxic adaptation. Among the chemical entities identified, the antihelminthic benzimidazoles represented one pharmacophore that appeared multiple times in our screen. Secondary assays confirmed that antihelminthics stabilized the transcriptional activator HIF-1α and induced expression of a known HIF target gene, p21(cip1/waf1), in post-mitotic cortical neurons. The on-target effect of these agents in stimulating hypoxic signaling was binding to free tubulin. Moreover, antihelminthic benzimidazoles also abrogated oxidative stress-induced death in vitro, and this on-target effect also involves binding to free tubulin. INNOVATION AND CONCLUSIONS: These studies demonstrate that tubulin-binding drugs can activate a component of the hypoxic adaptive response, specifically the stabilization of HIF-1α and its downstream targets. Tubulin-binding drugs, including antihelminthic benzimidazoles, also abrogate oxidative neuronal death in primary neurons. Given their safety in humans and known ability to penetrate into the central nervous system, antihelminthic benzimidazoles may be considered viable candidates for treating diseases associated with oxidative neuronal death, including stroke.


Asunto(s)
Antihelmínticos/farmacología , Bencimidazoles/farmacología , Hipocampo/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Inmunohistoquímica , Mebendazol/farmacología , Ratones
12.
Neurotherapeutics ; 10(4): 605-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24037427

RESUMEN

Sirtuins are a conserved family of deacetylases whose activities are dependent on nicotinamide adenine dinucleotide (NAD+). Sirtuins act in different cellular compartments, such as the nucleus where they deacetylate histones and transcriptional factors, in the cytoplasm where they modulate cytoskeletal and signaling molecules, and in the mitochondria where they engage components of the metabolic machinery. Collectively, they tune metabolic processes to energy availability, and modulate stress responses, protein aggregation, inflammatory processes, and genome stability. As such, they have garnered much interest and have been widely studied in aging and age-related neurodegeneration. In this chapter, we review the identification of sirtuins and their biological targets. We focus on their biological mechanisms of action and how they might be regulated, including via NAD metabolism, transcriptional and posttranscriptional control, and as targets of pharmacological agents. Lastly, we highlight the numerous studies suggesting that sirtuins are efficacious therapeutic targets in neurodegenerative disease and injury.


Asunto(s)
Histona Desacetilasas del Grupo III/metabolismo , Enfermedades del Sistema Nervioso/terapia , Sirtuinas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas del Grupo III/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Sirtuinas/genética
13.
Neurotherapeutics ; 10(4): 817-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24072514

RESUMEN

The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. Neurons, due to their post-mitotic state, high metabolism, and longevity are particularly prone to the accumulation of DNA lesions. Indeed, DNA damage has been suggested as a major contributor to both age-associated neurodegenerative diseases and acute neurological injury. The DNA damage response is a key factor in maintaining genome integrity. It relies on highly dynamic posttranslational modifications of the chromatin and DNA repair proteins to allow signaling, access, and repair of the lesion. Drugs that modulate the activity of the enzymes responsible for these modifications have emerged as attractive therapeutic compounds to treat neurodegeneration. In this review, we discuss the role of DNA double-strand breaks and abnormal chromatin modification patterns in a range of neurodegenerative conditions, and the chromatin modifiers that might ameliorate them. Finally, we suggest that understanding the epigenetic modifications specific to neuronal DNA repair is crucial for the development of efficient neurotherapeutic strategies.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Enfermedades Neurodegenerativas/terapia , Humanos , Enfermedades Neurodegenerativas/genética
14.
J Neurosci ; 33(20): 8621-32, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23678107

RESUMEN

Histone deacetylase (HDAC) inhibitors have been used to promote neuronal survival and ameliorate neurological dysfunction in a host of neurodegenerative disease models. The precise molecular mechanisms whereby HDAC inhibitors prevent neuronal death are currently the focus of intensive research. Here we demonstrate that HDAC inhibition prevents DNA damage-induced neurodegeneration by modifying the acetylation pattern of the tumor suppressor p53, which decreases its DNA-binding and transcriptional activation of target genes. Specifically, we identify that acetylation at K382 and K381 prevents p53 from associating with the pro-apoptotic PUMA gene promoter, activating transcription, and inducing apoptosis in mouse primary cortical neurons. Paradoxically, acetylation of p53 at the same lysines in various cancer cell lines leads to the induction of PUMA expression and death. Together, our data provide a molecular understanding of the specific outcomes of HDAC inhibition and suggest that strategies aimed at enhancing p53 acetylation at K381 and K382 might be therapeutically viable for capturing the beneficial effects in the CNS, without compromising tumor suppression.


Asunto(s)
Apoptosis/fisiología , Daño del ADN/fisiología , Histona Desacetilasas/metabolismo , Neuronas/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/citología , Células Cultivadas , Inmunoprecipitación de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Electroporación , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Histona Desacetilasas/genética , Humanos , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Neuronas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
Neurobiol Dis ; 49: 13-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22944173

RESUMEN

Preventing neuronal death is a priority for treating neurological diseases. However, therapies that inhibit pathological neuron loss could promote tumorigenesis by preventing the physiological death of cancerous cells. To avert this, we targeted the transcriptional upregulation of p21(waf1/cip1) (p21), an endogenous tumor suppressor with neuroprotective and pro-regenerative activity. We identified potential p21 indcuers by screening a FDA-approved drug and natural product small molecule library against hippocampal HT22 cells stably expressing a luciferase reporter driven by the proximal 60bp of the p21 promoter, and tested them for neuroprotection from glutathione depletion mediated oxidative stress, and cytotoxicity to cancer cell lines (DLD-1, Neuro-2A, SH-SY5Y, NGP, CHLA15, CHP212, and SK-N-SH) in vitro. Of the p21 inducers identified, only ciclopirox, a hypoxia-inducible factor prolyl-4-hydroxylase (HIF-PHD) inhibitor, simultaneously protected neurons from glutathione depletion and decreased cancer cell proliferation at concentrations that were not basally toxic to neurons. We found that other structurally distinct HIF-PHD inhibitors (desferrioxamine, 3,4-dihydroxybenzoate, and dimethyloxalyl glycine) also protected neurons at concentrations that killed cancer cells. HIF-PHD inhibitors stabilize HIF transcription factors, mediating genetic adaptation to hypoxia. While augmenting HIF stability is believed to promote tumorigenesis, we found that chronic HIF-PHD inhibition killed cancer cells, suggesting a protumorigenic role for these enzymes. Moreover, our findings suggest that PHD inhibitors can be used to treat neurological disease without significant concern for cell-autonomous tumor promotion.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fármacos Neuroprotectores/farmacología , Inhibidores de Prolil-Hidroxilasa/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Células PC12 , Ratas , Bibliotecas de Moléculas Pequeñas
16.
J Neurosci ; 31(18): 6858-70, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21543616

RESUMEN

Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neuronas/efectos de los fármacos , Plicamicina/análogos & derivados , Plicamicina/farmacología , Factor de Transcripción Sp1/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Drosophila , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción Sp1/genética , Relación Estructura-Actividad
17.
Proc Natl Acad Sci U S A ; 107(40): 17385-90, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855618

RESUMEN

Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production (∼3.7 nmol·min·mg protein) in astrocytes protected neurons from oxidative stress, but higher levels (∼130 nmol·min·mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms.


Asunto(s)
Astrocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Oxidantes/metabolismo , Estrés Oxidativo/fisiología , Animales , Astrocitos/citología , Células Cultivadas , Técnicas de Cocultivo , D-Aminoácido Oxidasa/metabolismo , Glutatión/metabolismo , Análisis por Micromatrices , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/citología , Ratas , Rhodotorula/enzimología
18.
EMBO Mol Med ; 2(9): 349-70, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20665636

RESUMEN

Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a selective corepressor of nuclear genes; transglutaminase 2 interacts directly with histone H3 in the nucleus. In a cellular model of HD, transglutaminase inhibition de-repressed two established regulators of mitochondrial function, PGC-1alpha and cytochrome c and reversed susceptibility of human HD cells to the mitochondrial toxin, 3-nitroproprionic acid; however, protection mediated by transglutaminase inhibition was not associated with improved mitochondrial bioenergetics. A gene microarray analysis indicated that transglutaminase inhibition normalized expression of not only mitochondrial genes but also 40% of genes that are dysregulated in HD striatal neurons, including chaperone and histone genes. Moreover, transglutaminase inhibition attenuated degeneration in a Drosophila model of HD and protected mouse HD striatal neurons from excitotoxicity. Altogether these findings demonstrate that selective TG inhibition broadly corrects transcriptional dysregulation in HD and defines a novel HDAC-independent epigenetic strategy for treating neurodegeneration.


Asunto(s)
Proteínas de Unión al GTP/antagonistas & inhibidores , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Transcripción Genética , Transglutaminasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Citocromos c/genética , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Drosophila , Metabolismo Energético , Inhibidores Enzimáticos/farmacología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Mitocondrias/metabolismo , Nitrocompuestos/toxicidad , Péptidos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Propionatos/toxicidad , Proteína Glutamina Gamma Glutamiltransferasa 2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
19.
J Am Chem Soc ; 132(31): 10842-6, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20614936

RESUMEN

Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated alpha-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacología , Indoles/síntesis química , Indoles/farmacología , Isoenzimas/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Anilidas/química , Anilidas/farmacología , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Histona Desacetilasa 6 , Homocisteína/análogos & derivados , Homocisteína/farmacología , Humanos , Ácidos Hidroxámicos/química , Indoles/química , Modelos Moleculares , Estructura Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
20.
Biochem Biophys Res Commun ; 393(4): 673-7, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20170631

RESUMEN

Most olfactory bulb (OB) interneurons are derived from neural stem cells in the subventricular zone (SVZ) and migrate to the OB via the rostral migratory stream (RMS). Mature dopaminergic interneurons in the OB glomerular layer are readily identified by their synaptic activity-dependent expression of tyrosine hydroxylase (TH). Paradoxically, TH is not expressed in neural progenitors migrating in the RMS, even though ambient GABA and glutamate depolarize these progenitors. In forebrain slice cultures prepared from transgenic mice containing a GFP reporter gene under the control of the Th 9kb upstream regulatory region, treatment with histone deacetylase (HDAC) inhibitors (either sodium butyrate, Trichostatin A or Scriptaid) induced Th-GFP expression specifically in the RMS independently of depolarizing conditions in the culture media. Th-GFP expression in the glomerular layer was also increased in slices treated with Trichostatin A, but this increased expression was dependent on depolarizing concentrations of KCl in the culture media. Th-GFP expression was also induced in the RMS in vivo by intra-peritoneal injections with either sodium butyrate or valproic acid. Quantitative RT-PCR analysis of neurosphere cultures confirmed that HDAC inhibitors de-repressed Th expression in SVZ-derived neural progenitors. Together, these findings suggest that HDAC function is critical for regulating Th expression levels in both neural progenitors and mature OB dopaminergic neurons. However, the differential responses to the combinatorial exposure of HDAC inhibitors and depolarizing culture conditions indicate that Th expression in mature OB neurons and neural progenitors in the RMS are regulated by distinct HDAC-mediated mechanisms.


Asunto(s)
Movimiento Celular , Histona Desacetilasas/metabolismo , Neuronas/fisiología , Bulbo Olfatorio/efectos de los fármacos , Células Madre/fisiología , Tirosina 3-Monooxigenasa/biosíntesis , Animales , Butiratos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Hidroxilaminas/farmacología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/enzimología , Bulbo Olfatorio/enzimología , Prosencéfalo/citología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/enzimología , Quinolinas/farmacología , Células Madre/citología , Células Madre/enzimología , Tirosina 3-Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA