Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 244(2): 134-45, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25488883

RESUMEN

BACKGROUND: Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration, and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. RESULTS: We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. CONCLUSIONS: In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Encéfalo/embriología , Dineínas Citoplasmáticas/metabolismo , Vaina de Mielina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Encéfalo/citología , Dineínas Citoplasmáticas/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mutación , Vaina de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Neural Dev ; 7: 37, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23167977

RESUMEN

BACKGROUND: Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP) because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. RESULTS: By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1), which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. CONCLUSION: Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Enfermedades Desmielinizantes/patología , Regulación del Desarrollo de la Expresión Génica/genética , Células de Schwann/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Movimiento Celular/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Dineínas Citoplasmáticas/genética , Enfermedades Desmielinizantes/genética , Embrión no Mamífero/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Larva , Microscopía Electrónica de Transmisión , Morfolinos/farmacología , Mutación/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Nervios Periféricos/ultraestructura , ARN/metabolismo , Células de Schwann/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Circ Res ; 109(2): 183-92, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21597012

RESUMEN

RATIONALE: Formation of heart valves requires early endocardial to mesenchymal transformation (EMT) to generate valve mesenchyme and subsequent endocardial cell proliferation to elongate valve leaflets. Nfatc1 (nuclear factor of activated T cells, cytoplasmic 1) is highly expressed in valve endocardial cells and is required for normal valve formation, but its role in the fate of valve endocardial cells during valve development is unknown. OBJECTIVE: Our aim was to investigate the function of Nfatc1 in cell-fate decision making by valve endocardial cells during EMT and early valve elongation. METHODS AND RESULTS: Nfatc1 transcription enhancer was used to generate a novel valve endocardial cell-specific Cre mouse line for fate-mapping analyses of valve endocardial cells. The results demonstrate that a subpopulation of valve endocardial cells marked by the Nfatc1 enhancer do not undergo EMT. Instead, these cells remain within the endocardium as a proliferative population to support valve leaflet extension. In contrast, loss of Nfatc1 function leads to enhanced EMT and decreased proliferation of valve endocardium and mesenchyme. The results of blastocyst complementation assays show that Nfatc1 inhibits EMT in a cell-autonomous manner. We further reveal by gene expression studies that Nfatc1 suppresses transcription of Snail1 and Snail2, the key transcriptional factors for initiation of EMT. CONCLUSIONS: These results show that Nfatc1 regulates the cell-fate decision making of valve endocardial cells during valve development and coordinates EMT and valve elongation by allocating endocardial cells to the 2 morphological events essential for valve development.


Asunto(s)
Linaje de la Célula , Endocardio/embriología , Válvulas Cardíacas/embriología , Factores de Transcripción NFATC/fisiología , Animales , Endocardio/citología , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/citología , Válvulas Cardíacas/crecimiento & desarrollo , Ratones , Morfogénesis , Organogénesis , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Transcripción Genética
4.
J Am Soc Nephrol ; 20(2): 311-21, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19118153

RESUMEN

Recovery from acute kidney injury requires regeneration of tubule cells. Because calcineurin induces nuclear transport of NFATc proteins, whose expression pattern correlates with the nephron segments injured by calcineurin inhibitors, we hypothesized that NFATc1 plays a role in modifying epithelial regeneration after injury. To test this, we induced proximal tubular cell (PTC) injury in Balb/c mice and Nfatc1(+/-) mice with mercuric chloride; the PTCs of Nfatc1(+/-) mice demonstrated increased apoptosis, sustained injury, and delayed regeneration. To attenuate NFATc1 activity further, we injected cyclosporin A daily. Cyclosporin A-treated Nfatc1(+/-) mice demonstrated rapid and severe injury after administration of mercuric chloride, with increased serum creatinine, increased apoptosis, decreased PTC proliferation, and increased mortality compared with similarly treated wild-type mice. Using a novel NFATc1 transgenic line that reports activation of an NFATc1 enhancer domain critical for NFATc1 autoamplification, we demonstrated accentuated NFATc1 expression in a PTC subpopulation after mercuric chloride-induced injury. In addition, NFATc1-labeled, apoptosis-resistant PTCs proliferated to repair the damaged proximal tubule segment. These data provide evidence for a resident progenitor PTC population and suggest a role for NFATc1 in the regeneration of injured proximal tubules.


Asunto(s)
Túbulos Renales/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/fisiología , Células Madre/metabolismo , Animales , Apoptosis , Ciclosporina/farmacología , Femenino , Riñón/lesiones , Cloruro de Mercurio/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regeneración
5.
Am J Physiol Renal Physiol ; 293(5): F1468-75, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17715266

RESUMEN

Serotonin [5-hydroxytryptamine (5HT)] acts through multiple G protein-coupled 5-HT receptors, and its activity is also regulated by the 5-HT transporter. The current studies report the expression and localization of the 5-HT receptors and transporter in the kidney. In addition, the enzymatic pathway mediating 5-HT synthesis is present in renal cortex, especially in the proximal tubules and glomerular epithelial cells and mesangial cells. Expression of the 5-HT receptors and 5-HT transporter was detected by RT-PCR in cell lines of these cell types. In cultured proximal tubule cells and podocytes, 5-HT activated ERK1/2 and increased the expression of connective tissue growth factor and transforming growth factor-beta, two key mediators of extracellular matrix accumulation. Immunohistochemistry and real-time RT-PCR studies also indicated that 5-HT stimulated expression of vascular endothelial growth factor in podocytes in vitro and in vivo. Therefore, these results indicate the presence of an integrated intrarenal serotonergic system and suggest a possible role for 5-HT as a mediator of renal fibrosis in the kidney.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Corteza Renal/metabolismo , Receptores de Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Triptófano Hidroxilasa/metabolismo , Animales , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo , Proteínas Inmediatas-Precoces/metabolismo , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Podocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Transducción de Señal/fisiología , Distribución Tisular , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Development ; 133(22): 4585-93, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17050629

RESUMEN

The transforming growth factorbeta (Tgfbeta) signaling pathway plays crucial roles in many biological processes. To understand the role(s) of Tgfbeta signaling during cardiogenesis in vivo and to overcome the early lethality of Tgfbr2(-/-) embryos, we applied a Cre/loxp system to specifically inactivate Tgfbr2 in either the myocardium or the endothelium of mouse embryos. Our results show that Tgfbr2 in the myocardium is dispensable for cardiogenesis in most embryos. Contrary to the prediction from results of previous in vitro collagen gel assays, inactivation of Tgfbr2 in the endocardium does not prevent atrioventricular cushion mesenchyme formation, arguing against its essential role in epithelium-mesenchyme transformation in vivo. We further demonstrate that Tgfbeta signaling is required for the proper remodeling of the atrioventricular canal and for cardiac looping, and that perturbation in Tgfbeta signaling causes the double-inlet left ventricle (DILV) defect. Thus, our study provides a unique mouse genetic model for DILV, further characterization of which suggests a potential cellular mechanism for the defect.


Asunto(s)
Diferenciación Celular/fisiología , Defectos de la Almohadilla Endocárdica/embriología , Corazón/embriología , Mesodermo/fisiología , Modelos Animales , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Defectos de la Almohadilla Endocárdica/metabolismo , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Mesodermo/metabolismo , Ratones , Ratones Mutantes , Microdisección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA