Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 26(4): 340-350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349309

RESUMEN

BACKGROUND AIMS: Age-related macular degeneration (AMD) is the most common cause of blindness in elderly patients within developed countries, affecting more than 190 million worldwide. In AMD, the retinal pigment epithelial (RPE) cell layer progressively degenerates, resulting in subsequent loss of photoreceptors and ultimately vision. There is currently no cure for AMD, but therapeutic strategies targeting the complement system are being developed to slow the progression of the disease. METHODS: Replacement therapy with pluripotent stem cell-derived (hPSC) RPEs is an alternative treatment strategy. A cell therapy product must be produced in accordance with Good Manufacturing Practices at a sufficient scale to facilitate extensive pre-clinical and clinical testing. Cryopreservation of the final cell product is therefore highly beneficial, as the manufacturing, pre-clinical and clinical testing can be separated in time and location. RESULTS: We found that mature hPSC-RPE cells do not survive conventional cryopreservation techniques. However, replating the cells 2-5 days before cryopreservation facilitates freezing. The replated and cryopreserved hPSC-RPE cells maintained their identity, purity and functionality as characteristic RPEs, shown by cobblestone morphology, pigmentation, transcriptional profile, RPE markers, transepithelial resistance and pigment epithelium-derived factor secretion. Finally, we showed that the optimal replating time window can be tracked noninvasively by following the change in cobblestone morphology. CONCLUSIONS: The possibility of cryopreserving the hPSC-RPE product has been instrumental in our efforts in manufacturing and performing pre-clinical testing with the aim for clinical translation.


Asunto(s)
Degeneración Macular , Células Madre Pluripotentes , Humanos , Anciano , Diferenciación Celular , Degeneración Macular/terapia , Criopreservación , Células Epiteliales , Pigmentos Retinianos
2.
Commun Biol ; 6(1): 969, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740059

RESUMEN

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Ventricular dysfunction and cardiac arrhythmias are well-documented complications in patients with repaired TOF. Whether intrinsic abnormalities exist in TOF cardiomyocytes is unknown. We establish human induced pluripotent stem cells (hiPSCs) from TOF patients with and without DiGeorge (DG) syndrome, the latter being the most commonly associated syndromal association of TOF. TOF-DG hiPSC-derived cardiomyocytes (hiPSC-CMs) show impaired ventricular specification, downregulated cardiac gene expression and upregulated neural gene expression. Transcriptomic profiling of the in vitro cardiac progenitors reveals early bifurcation, as marked by ectopic RGS13 expression, in the trajectory of TOF-DG-hiPSC cardiac differentiation. Functional assessments further reveal increased arrhythmogenicity in TOF-DG-hiPSC-CMs. These findings are found only in the TOF-DG but not TOF-with no DG (ND) patient-derived hiPSC-CMs and cardiac progenitors (CPs), which have implications on the worse clinical outcomes of TOF-DG patients.


Asunto(s)
Síndrome de DiGeorge , Células Madre Pluripotentes Inducidas , Proteínas RGS , Tetralogía de Fallot , Humanos , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/genética , Tetralogía de Fallot/complicaciones , Arritmias Cardíacas/etiología , Miocitos Cardíacos
3.
Nature ; 622(7983): 562-573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673118

RESUMEN

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Embrionarias Humanas , Humanos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Fertilización , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología , Células Gigantes/citología
5.
Stem Cells ; 41(2): 105-110, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36153824

RESUMEN

Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this commentary, we discuss the recent re-interpretation of our work.


Asunto(s)
Oogénesis , Ovario , Adulto , Femenino , Humanos , Persona de Mediana Edad , Oogénesis/fisiología , Folículo Ovárico , Células Germinativas , Células Madre/metabolismo
6.
Hum Reprod Open ; 2022(4): hoac043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339249

RESUMEN

STUDY QUESTION: Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER: A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY: The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION: Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS: Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA: RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION: Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS: The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS: This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.

7.
Stem Cell Reports ; 17(6): 1458-1475, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705015

RESUMEN

Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) are a promising cell source to treat age-related macular degeneration (AMD). Despite several ongoing clinical studies, a detailed mapping of transient cellular states during in vitro differentiation has not been performed. Here, we conduct single-cell transcriptomic profiling of an hESC-RPE differentiation protocol that has been developed for clinical use. Differentiation progressed through a culture diversification recapitulating early embryonic development, whereby cells rapidly acquired a rostral embryo patterning signature before converging toward the RPE lineage. At intermediate steps, we identified and examined the potency of an NCAM1+ retinal progenitor population and showed the ability of the protocol to suppress non-RPE fates. We demonstrated that the method produces a pure RPE pool capable of maturing further after subretinal transplantation in a large-eyed animal model. Our evaluation of hESC-RPE differentiation supports the development of safe and efficient pluripotent stem cell-based therapies for AMD.


Asunto(s)
Células Madre Embrionarias Humanas , Degeneración Macular , Animales , Diferenciación Celular/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/terapia , Epitelio Pigmentado de la Retina , Pigmentos Retinianos
8.
Nat Cell Biol ; 24(6): 845-857, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637409

RESUMEN

The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages. Through quantitative epigenome profiling, we found that a broad gain of histone H3 lysine 27 trimethylation (H3K27me3) is a distinct feature of naïve pluripotency. We define shared and naïve-specific bivalent promoters featuring PRC2-mediated H3K27me3 concomitant with H3K4me3. Naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state. Inhibition of PRC2 forces naïve human embryonic stem cells into an 'activated' state, characterized by co-expression of pluripotency and lineage-specific transcription factors, followed by differentiation into either trophectoderm or mesoderm lineages. In summary, PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development.


Asunto(s)
Células Madre Embrionarias Humanas , Complejo Represivo Polycomb 2 , Diferenciación Celular/genética , Desarrollo Embrionario , Histonas/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
9.
Nature ; 600(7888): 223-224, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789887
10.
Cell Stem Cell ; 28(9): 1503-1504, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478626

RESUMEN

Despite being a biologically fundamental question, the precise timing of lineage specification during human preimplantation development remains elusive. In this issue of Cell Stem Cell, Meistermann et al. (2021) refine our view through time-lapse embryo staging and single-cell sequencing and challenge the concept of a human inner cell mass.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Humanos
11.
Nat Commun ; 12(1): 5126, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446705

RESUMEN

Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1, a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development.


Asunto(s)
Amnios/metabolismo , Macaca fascicularis/embriología , Mesodermo/embriología , Amnios/embriología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Mesodermo/metabolismo , Embarazo , Transducción de Señal
12.
Stem Cell Reports ; 16(5): 1117-1141, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979598

RESUMEN

Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.


Asunto(s)
Embrión de Mamíferos/fisiología , Modelos Biológicos , Animales , Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Humanos , Estándares de Referencia
13.
Nat Cell Biol ; 23(1): 49-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420491

RESUMEN

Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.


Asunto(s)
Blastómeros/citología , Diferenciación Celular , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Células Madre Totipotentes/citología , Animales , Blastómeros/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual , Células Madre Totipotentes/metabolismo
16.
Stem Cells Transl Med ; 9(8): 936-953, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32319201

RESUMEN

As pluripotent stem cell (PSC)-based reparative cell therapies are reaching the bedside, there is a growing need for the standardization of studies concerning safety of the derived products. Clinical trials using these promising strategies are in development, and treatment for age-related macular degeneration is one of the first that has reached patients. We have previously established a xeno-free and defined differentiation protocol to generate functional human embryonic stem cells (hESCs)-derived retinal pigment epithelial (RPE) cells. In this study, we perform preclinical safety studies including karyotype and whole-genome sequencing (WGS) to assess genome stability, single-cell RNA sequencing to ensure cell purity, and biodistribution and tumorigenicity analysis to rule out potential migratory or tumorigenic properties of these cells. WGS analysis illustrates that existing germline variants load is higher than the introduced variants acquired through in vitro culture or differentiation, and enforces the importance to examine the genome integrity at a deeper level than just karyotype. Altogether, we provide a strategy for preclinical evaluation of PSC-based therapies and the data support safety of the hESC-RPE cells generated through our in vitro differentiation methodology.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Degeneración Macular/terapia , Células Madre Pluripotentes/metabolismo , Anciano , Diferenciación Celular , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes/citología
17.
Nat Commun ; 11(1): 1609, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231223

RESUMEN

In vitro differentiation of human pluripotent stem cells into functional retinal pigment epithelial (RPE) cells provides a potentially unlimited source for cell based reparative therapy of age-related macular degeneration. Although the inherent pigmentation of the RPE cells have been useful to grossly evaluate differentiation efficiency and allowed manual isolation of pigmented structures, accurate quantification and automated isolation has been challenging. To address this issue, here we perform a comprehensive antibody screening and identify cell surface markers for RPE cells. We show that these markers can be used to isolate RPE cells during in vitro differentiation and to track, quantify and improve differentiation efficiency. Finally, these surface markers aided to develop a robust, direct and scalable monolayer differentiation protocol on human recombinant laminin-111 and -521 without the need for manual isolation.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Neuronas/metabolismo , Pigmentos Retinianos/metabolismo , Animales , Antígeno CD56 , Células Madre Embrionarias , Humanos , Laminina/genética , Degeneración Macular/metabolismo , Conejos , Epitelio Pigmentado de la Retina/metabolismo
18.
Stem Cell Res ; 45: 101810, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32339905

RESUMEN

The Karolinska Institutet Human Embryonic Stem Cell Bank (KI Stem Cell Bank) was established at KI, Stockholm, Sweden, when the first human embryonic stem cell (hESC) line was derived by Professor Hovatta and colleagues in 2002. Since then, the bank has grown to include 60 hESC lines. From the very beginning the aim of the bank has been derivation of hESC lines suitable for clinical use. Step by step progress has been made towards this goal, including removal of xeno components, establishment of chemically defined conditions and Good Manufacturing Practice (GMP) compliancy. Today our bank includes such clinical grade hESC line, KARO1, derived and banked according to GMP guidelines. Many of the hESC lines in the bank have been distributed to the scientific community and are deposited in the Stockholm Medical Biobank available for research on collaborative basis.


Asunto(s)
Células Madre Embrionarias Humanas , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Células Madre Embrionarias , Humanos , Suecia
19.
Stem Cell Reports ; 14(4): 648-662, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32197113

RESUMEN

Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells could serve as a replacement therapy in advanced stages of age-related macular degeneration. However, allogenic hESC-RPE transplants trigger immune rejection, supporting a strategy to evade their immune recognition. We established single-knockout beta-2 microglobulin (SKO-B2M), class II major histocompatibility complex transactivator (SKO-CIITA) and double-knockout (DKO) hESC lines that were further differentiated into corresponding hESC-RPE lines lacking either surface human leukocyte antigen class I (HLA-I) or HLA-II, or both. Activation of CD4+ and CD8+ T-cells was markedly lower by hESC-RPE DKO cells, while natural killer cell cytotoxic response was not increased. After transplantation of SKO-B2M, SKO-CIITA, or DKO hESC-RPEs in a preclinical rabbit model, donor cell rejection was reduced and delayed. In conclusion, we have developed cell lines that lack both HLA-I and -II antigens, which evoke reduced T-cell responses in vitro together with reduced rejection in a large-eyed animal model.


Asunto(s)
Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Madre Embrionarias Humanas/citología , Epitelio Pigmentado de la Retina/citología , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Citotoxicidad Inmunológica , Xenoinjertos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Inmunomodulación , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple/genética , Linfocitos T/metabolismo , Transactivadores/metabolismo , Microglobulina beta-2/metabolismo
20.
Nat Commun ; 11(1): 1357, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170114

RESUMEN

Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.


Asunto(s)
Diferenciación Celular/fisiología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Proteómica/métodos , Receptor EphA2/metabolismo , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Efrina-A2 , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Ratones , Fosforilación , Receptor EphA2/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...